Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hai hay nhiều số có ƯCLN bằng 1 gọi là các số nguyên tố cùng nhau. ... Nếu chia a và b cho d thì thương của chúng là những số nguyên tố cùng nhau. *Mối quan hệ đặc biệt giữa ƯCLN của 2 số a, b (kí hiệu (a,b)) và BCNN của 2 số a, b (kí hiệu [a, b]) với tích của 2 số a và b là: a
Để tìm UCLN bạn thực hiện theo các bước sau
Bước 1: Phân tích mỗi số ra thừa số nguyên tố.
Bước 2: Chọn ra các thừa số nguyên tố chung
Bước 3: Nhân số nguyên tố chung với tích mũ chung nhỏ nhất trong 2 số sẽ được UCLN cần tìm.
Ước chung lớn nhất của hai hay nhiều số là số lớn nhất trong tập hợp các ước chung của các số đó.
Bội chung nhỏ nhất (BCNN) của hai hay nhiều số là số lớn nhất khác 0 trong tập hợp các bội chung của các số đó.
+ Cho ƯCLN (a, b) = d. Nếu chia a và b cho d thì thương của chúng là những số nguyên tố cùng nhau.
* Mối quan hệ đặc biệt giữa ƯCLN của 2 số a, b (kí hiệu (a,b)) và BCNN của 2 số a, b (kí hiệu [a, b]) với tích của 2 số a và b là:
a . b = (a, b) . [a, b].
* Chứng minh: Đặt (a, b) = d => a = md và b = nd. Với m,n∈N∗m,n∈N∗, (m. n) = 1. Từ (I) => ab = mnd2; [a, b] = mnd => (a, b) . [a, b] = d . (mnd) = mnd2 = ab.
Vậy ab = (a, b) [a, b]. (ĐPCM)
Đọc kĩ nhé!
Một dạng toán về ước chung lớn nhất và bội chung nhỏ nhất, ước và bội - Giáo Án, Bài Giảng
Có UCLN(a;b).BCNN(a;b)=a.b
=) UCLN(a;b)=\(\frac{a.b}{BCNN\left(a;b\right)}\)hay BCNN(a;b)=\(\frac{a.b}{UCLN\left(a;b\right)}\)
Trong một số trường hợp, có thể sử dụng mối quan hệ đặc biệt giữa ƯCLN, BCNN và tích của hai số nguyên dương a, b, đó là : ab = (a, b).[a, b], trong đó (a, b) là ƯCLN và [a, b] là BCNN của a và b. Việc chứng minh hệ thức này không khó : Theo định nghĩa ƯCLN, gọi d = (a, b) => a = md ; b = nd với m, n thuộc Z+ ; (m, n) = 1 (*) Từ (*) => ab = mnd2 ; [a, b] = mnd => (a, b).[a, b] = d.(mnd) = mnd2 = ab=> ab = (a, b).[a, b] .
Bài 1:
a: UCLN(30;90)=30
BCNN(30;90)=90
b: UCLN(140;210;56)=14
BCNN(140;210;56)=840
c: UCLN(105;84;30)=3
BCNN(105;84;30)=420
ko có
Đều phân tích ra thừa số nguyên tố , hết !