![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{b}{a+b}=\frac{c}{b+c}=\frac{a}{a+c}\Rightarrow\frac{a+b}{b}=\frac{b+c}{c}=\frac{a+c}{a}\)
\(\Leftrightarrow\frac{a}{b}+1=\frac{b}{c}+1=\frac{c}{a}+1\)mà\(a,b,c>0\Rightarrow a+b+c\ne0\)
\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\Rightarrow a=b=c\)
\(\Rightarrow M=\frac{ab+bc+ac}{a^2+b^2+c^2}=\frac{a^2+b^2+c^2}{a^2+b^2+c^2}=1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Do \(a^x=bc;b^y=ca;c^z=ab\Rightarrow a^x.b^y.c^z=bc.ca.ab=a^2.b^2.c^2\)\(\Leftrightarrow\frac{a^2.b^2.c^2}{a^x.b^y.c^z}=1\Rightarrow\frac{a^2}{a^x}.\frac{b^2}{b^y}.\frac{c^2}{c^z}=1\)
Do a;b;c;x;y;z>0;a;b;c>1\(\Rightarrow\hept{\begin{cases}\frac{a^2}{a^x}=1\\\frac{b^2}{b^y}=1\\\frac{c^2}{c^z}=1\end{cases}}\Rightarrow\hept{\begin{cases}a^2=a^x\\b^2=b^y\\c^2=c^z\end{cases}}\Rightarrow x=y=z=2\)
\(\Rightarrow\hept{\begin{cases}x+y+z+2=2+2+2+2=4\\x.y.z=2.2.2=4\end{cases}}\Rightarrow x+y+z+2=xyz\)
![](https://rs.olm.vn/images/avt/0.png?1311)
ta có: a/5=b/9
a/10=c/7
suy ra a/10=b/18=c/7
Gọi a/10=b/18=c/7=k
Ta lại có: a=10k
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{ab+ac}{2}=\frac{bc+ab}{3}=\frac{ca+bc}{4}\)
( ta lần lược lấy - (1) + (2) + (3) = (1) - (2) + (3) = (1) + (2) - (3) được)
\(=\frac{2bc}{5}=\frac{2ca}{3}=\frac{2ab}{1}\)
Ta thấy rằng a,b,c không thể = 0 vì như vậy thì a + b + c \(\ne69\)
\(\Rightarrow\hept{\begin{cases}a=\frac{c}{5}\\b=\frac{c}{3}\end{cases}}\)
Thế vào: a + b + c = 69
\(\Leftrightarrow\frac{c}{5}+\frac{c}{3}+c=69\)
\(\Rightarrow c=45\)
\(\Rightarrow\hept{\begin{cases}a=9\\b=15\end{cases}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(ab=2,bc=3,ac=54\)
\(\Rightarrow ab.bc.ac=2.3.54\)
\(\Rightarrow\left(abc\right)^2=324\)
\(\Rightarrow\left(abc\right)^2=18^2=\left(-18\right)^2\)
+)\(abc=18\)
\(\Rightarrow a=18:3=6\)
\(\Rightarrow b=18:54=\frac{1}{3}\)
\(\Rightarrow c=18:2=9\)
+)\(abc=-18\)
\(\Rightarrow a=-18:3=-6\)
\(\Rightarrow b=-18:54=\frac{-1}{3}\)
\(\Rightarrow c=-18:2=-9\)
Vậy :\(a\in\left(6;-6\right)\)
\(b\in\left(\frac{1}{3};\frac{-1}{3}\right)\)
\(c\in\left(9;-9\right)\)