\(m,n\in Z\) thỏa mãn \(m\left(m+1\right)\left(m+2\right)=n^2\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 1 2020

Vũ Minh Tuấn, Băng Băng 2k6, Nguyễn Thành Trương, buithianhtho, Akai Haruma, No choice teen, Bùi Thị Vân,

HISINOMA KINIMADO, Nguyễn Thanh Hằng, Nguyễn Ngô Minh Trí, @Nguyễn Việt Lâm, @Nguyễn Thị Ngọc Thơ

mn giúp em với ạ! Cảm ơn nhiều !

9 tháng 2 2019

Làm thử theo cách cổ truyền vậy -.-

Ta có : \(n^2+n+1=\left(m^2+m-3\right)\left(m^2-m+5\right)\)

\(\Leftrightarrow n^2+n+1=m^4+m^2+8m-15\)

\(\Leftrightarrow n^2+n+16-m^4-m^2-8m=0\)

Coi pt trên là pt bậc 2 ẩn n

Ta có : \(\Delta=4m^4+4m^2+32m-63\)

Pt có nghiệm nguyên khi \(\Delta\)là 1 số chính phương

Ta có \(\Delta=4m^4+4m^2+32m-63=\left(2m^2+2\right)^2-4\left(m-4\right)^2-3< \left(2m^2+2\right)^2\)

Giả sử m > 2 thì\(\Delta=\left(2m^2+1\right)^2+32\left(m-2\right)>\left(2m^2+1\right)^2\forall m>2\)

Khi đó  \(\left(2m^2+1\right)^2< \Delta< \left(2m^2+2\right)^2\)

Như vậy \(\Delta\)không phải số chính phương (Vì giữa 2 số chính phương liên tiếp ko còn scp nào nữa)

Nên điều giả sử là sai .

Tức là\(m\le2\)

Mà \(m\inℕ^∗\)

\(\Rightarrow m\in\left\{1;2\right\}\)

*Với m = 1 thì pt ban đầu trở thành

\(n^2+n+1=\left(1+1-3\right)\left(1-1+5\right)\)

\(\Leftrightarrow n^2+n+1=-5\)

\(\Leftrightarrow\left(n+\frac{1}{2}\right)^2=-\frac{23}{4}\)

Pt vô nghiệm

*Với m = 2 thì pt ban đầu trở thành

\(n^2+n+1=\left(2^2+2-3\right)\left(2^2-2+5\right)\)

\(\Leftrightarrow n^2+n+1=21\)

\(\Leftrightarrow n^2+n-20=0\)

\(\Leftrightarrow\left(n-4\right)\left(n+5\right)=0\)

\(\Leftrightarrow n=4\left(Do\text{ }n\inℕ^∗\right)\)

Vậy pt ban đầu có nghiệm nguyên dương duy nhất (m;n) = (2;4)

Giúp : Cho \(\Delta\)ABC nhọn nội tiếp (O) , D là điểm trên cung BC không chứa A . Dựng hình bình hành ADCE . Gọi H , K là trực tâm của tam giác ABC ,  ACE ; P , Q là hình chiếu vuông góc của K trên các đường thẳng BC , AB và I là giao EK , AC

CMR: a,P ; I ; Q thẳng hàng

          b, đường thẳng PQ đi qua trung điểm HK 

4 tháng 4 2019

\(\Delta'=\left(m-1\right)^2-m^2+m-1=m^2-2m+1-m^2+m-1=-m.\)

Để phương trình có 2 nghiệm thì \(\Delta'\ge0\Leftrightarrow-m\ge0\Leftrightarrow m\le0\)

Theo vi ét:

\(\hept{\begin{cases}x_1+x_2=-2\left(m-1\right)\\x_1.x_2=m^2-m+1=\left(m-\frac{1}{2}\right)^2+\frac{3}{4}>0\end{cases}}\)

\(\left|x_1\right|+\left|x_2\right|=4\Leftrightarrow x_1+x_2+2\left|x_1.x_2\right|=16\)

\(\Leftrightarrow1-2m+2\left|m^2-m+1\right|=16\)

\(\Leftrightarrow1-2m+2m^2-2m+2=16\)(Vì \(m^2-m+1>0\Rightarrow\left|m^2-m+1\right|=m^2-m+1\))

\(\Leftrightarrow2m^2-4m-13=0\)

Đến đây bạn tự giải \(\Delta\)tìm m đối chiếu điều kiện là ok.

NV
25 tháng 10 2020

1a.

\(2P=1-\frac{bc}{2a^2+bc}+1-\frac{ca}{2b^2+ca}+1-\frac{ab}{2c^2+ab}\)

\(\Rightarrow2P=3-\left(\frac{bc}{2a^2+bc}+\frac{ca}{2b^2+ca}+\frac{ab}{2c^2+ab}\right)\)

\(\Rightarrow2P=3-\left(\frac{b^2c^2}{2a^2bc+b^2c^2}+\frac{c^2a^2}{2b^2ca+c^2a^2}+\frac{a^2b^2}{2c^2ab+a^2b^2}\right)\)

\(\Rightarrow2P\le3-\frac{\left(ab+bc+ca\right)^2}{a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)}=3-1=2\)

\(\Rightarrow P\le1\)

\(P_{max}=1\) khi \(a=b=c\)

NV
25 tháng 10 2020

1b.

\(Q=\frac{a^2}{5a^2+b^2+c^2+2bc}+\frac{b^2}{5b^2+a^2+c^2+2ca}+\frac{c^2}{5c^2+a^2+b^2+2ab}\)

\(Q=\frac{a^2}{a^2+b^2+c^2+\left(2a^2+bc\right)+\left(2a^2+bc\right)}+\frac{b^2}{a^2+b^2+c^2+\left(2b^2+ca\right)+\left(2b^2+ca\right)}+\frac{c^2}{a^2+b^2+c^2+\left(2c^2+ab\right)+\left(2c^2+ab\right)}\)

\(\Rightarrow Q\le\frac{1}{9}\left(\frac{a^2}{a^2+b^2+c^2}+\frac{b^2}{a^2+b^2+c^2}+\frac{c^2}{a^2+b^2+c^2}+2\left(\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ca}+\frac{c^2}{2c^2+ab}\right)\right)\)

\(\Rightarrow Q\le\frac{1}{9}\left(1+2\left(\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ca}+\frac{c^2}{2c^2+ab}\right)\right)\)

Theo kết quả câu a ta có:

\(\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ca}+\frac{c^2}{2c^2+ab}\le1\)

\(\Rightarrow Q\le\frac{1}{9}\left(1+2\right)=\frac{1}{3}\)

\(Q_{max}=\frac{1}{3}\) khi \(a=b=c\)

4 tháng 8 2019

Đặt x-2=a; y-2=b; z-2=c (a,b,c>0)

Ta có: \(\frac{1}{a+2}+\frac{1}{b+2}+\frac{1}{c+2}=1\)

<=>\(\frac{1}{a+2}=1-\frac{1}{b+2}-\frac{1}{c+2}\Leftrightarrow\frac{1}{a+2}=\frac{1}{2}-\frac{1}{b+2}+\frac{1}{2}-\frac{1}{c+2}\)

<=>\(\frac{1}{a+2}=\frac{b}{2\left(b+2\right)}+\frac{c}{2\left(c+2\right)}\ge2\sqrt{\frac{bc}{4\left(b+2\right)\left(c+2\right)}}=\sqrt{\frac{bc}{\left(b+2\right)\left(c+2\right)}}\left(1\right)\)

Tương tự ta cũng có: \(\frac{1}{b+2}\ge\sqrt{\frac{ca}{\left(c+2\right)\left(a+2\right)}}\left(2\right);\frac{1}{c+2}\ge\sqrt{\frac{ab}{\left(a+2\right)\left(b+2\right)}}\left(3\right)\)

Nhân (1),(2),(3) vế theo vế ta được:

\(\frac{1}{\left(a+2\right)\left(b+2\right)\left(c+2\right)}\ge\sqrt{\frac{\left(abc\right)^2}{\left[\left(a+2\right)\left(b+2\right)\left(c+2\right)\right]^2}}\)

<=> \(\frac{1}{\left(a+2\right)\left(b+2\right)\left(c+2\right)}\ge\frac{abc}{\left(a+2\right)\left(b+2\right)\left(c+2\right)}\)

\(\Leftrightarrow abc\le1\Leftrightarrow\left(x-2\right)\left(y-2\right)\left(z-2\right)\le1\) (đpcm)

Dấu "=" xảy ra khi a=b=c=3

4 tháng 8 2019

Chia hai vế của cho xyz khác 0, ta cần chứng minh:

\(\left(1-\frac{2}{x}\right)\left(1-\frac{2}{y}\right)\left(1-\frac{2}{z}\right)\le\frac{1}{xyz}\)

Đặt \(\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)\rightarrow\left(a;b;c\right)\). Bài toán trở thành:

Cho 0 <a,b,c \(< \frac{1}{2}\) thỏa mãn \(a+b+c=1\). Chứng minh rằng:

\(\left(1-2a\right)\left(1-2b\right)\left(1-2c\right)\le abc\)

\(\Leftrightarrow\left(b+c-a\right)\left(c+a-b\right)\left(a+b-c\right)\le abc\)

BĐT đến đây trở về dạng quen thuộc! Hoặc không thì nó hiển nhiên đúng theo BĐT Schur

NV
19 tháng 11 2018

\(4\left(m+n\right)^2-mn⋮15^2\Rightarrow4\left(4\left(m+n\right)^2-mn\right)⋮15^2\)

\(\Rightarrow16\left(m+n\right)^2-4mn⋮15^2\Rightarrow15\left(m+n\right)^2+\left(m-n\right)^2⋮15^2\Rightarrow15\left(m+n\right)^2+\left(m-n\right)^2⋮15\)

\(15\left(m+n\right)^2⋮15\Rightarrow\left(m-n\right)^2⋮15\Rightarrow\left\{{}\begin{matrix}\left(m-n\right)^2⋮3\\\left(m-n\right)^2⋮5\end{matrix}\right.\)

Do 3 và 5 là số nguyên tố \(\Rightarrow\left\{{}\begin{matrix}m-n⋮3\\m-n⋮5\end{matrix}\right.\) \(\Rightarrow m-n⋮15\Rightarrow\left(m-n\right)^2⋮15^2\)

\(\Rightarrow15\left(m+n\right)^2⋮15^2\Rightarrow\left(m+n\right)^2⋮15\Rightarrow\left\{{}\begin{matrix}\left(m+n\right)^2⋮3\\\left(m+n\right)^2⋮5\end{matrix}\right.\)

Mà 3; 5 là số nguyên tố \(\Rightarrow\left\{{}\begin{matrix}m+n⋮3\\m+n⋮5\end{matrix}\right.\) \(\Rightarrow m+n⋮15\Rightarrow\left(m+n\right)^2⋮15^2\)

Áp dụng kết quả này vào điều kiện ban đầu: \(4\left(m+n\right)^2-mn⋮15^2\) , mà ta \(\left(m+n\right)^2⋮15^2\) \(\Rightarrow mn⋮15^2\)

19 tháng 11 2018

Akai Haruma

Cô giúp em với ạ!!!!