Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.a.ta có:\(\frac{2017+2018}{2018+2019}=\frac{2017}{2018+2019}+\frac{2018}{2018+2019}\)
mà \(\frac{2017}{2018}>\frac{2017}{2018+2019};\frac{2018}{2019}>\frac{2018}{2018+2019}\)
\(\Rightarrow M>N\)
b.ta thấy:
\(\frac{n+1}{n+2}>\frac{n+1}{n+3}>\frac{n}{n+3}\Rightarrow\frac{n+1}{n+2}>\frac{n}{n+3}\)
=> A>B
Để \(M\in Z\)thì x + 2 chia hết cho 3
=> \(x=3k+1\left(k\in Z\right)\)
Vậy với \(x=3k+1\left(k\in Z\right)\)thì \(M\in Z\)
\(M\in Z\)=>x+2 chia hết cho 3
=>x+2=3k ( \(k\in Z\))
x=3k-2 ( \(k\in Z\))
Với x=3k-2 thì M thuộc Z
Để \(M\in Z\)thì 7 chia hết cho x - 1
=> \(x-1\in\left\{1;-1;7;-7\right\}\)
=> \(x\in\left\{2;0;8;-6\right\}\)
Vậy \(x\in\left\{2;0;8;-6\right\}\)thỏa mãn đề bài
Để M nguyên thì 7 chia hết cho x-1
Vậy x-1 thuộc:
+-1;+-7.
=> x thuộc:
0;2;8;-6.
Chúc em học tốt^^
Bài 1:
a)\(\frac{x}{5}=\frac{-3}{y}\Rightarrow xy=-15\)
Vậy ta có các cặp số (x, y) thỏa mãn là: (-1; 15) (1; -15) (-3; 5) (3; -5)
b)\(\frac{-11}{x}=\frac{y}{3}\Rightarrow xy=-33\)
Vậy ta có các cặp số (x, y) thỏa mãn là: (-1; 33) (1; -33) (3; -11) (-3; 11)
Bài 2: Ở đây mình vẫn chưa hiểu về cặp số nguyên
a) Để M là số nguyên thì x + 2 chia hết cho 3. Vậy ta có các số: x \(\in\){...; -5; -2; 1; 4; 7; 10; ...}
b) Để N là số nguyên thì 7 chia hết cho x - 1 và x - 1\(\ne\)0 (hay x\(\ne\)1)
\(\Rightarrow x-1\inƯ\left(7\right)=\left\{1;-1;7;-7\right\}\)
\(\Rightarrow x\in\left\{2;0;8;-6\right\}\)
Vậy \(x\in\left\{2;0;8;-6\right\}\)
c) Để D là số nguyên thì x + 1 chia hết cho x - 1 và x - 1\(\ne\)0 (hay x\(\ne\)1). Đặt tính chia (bạn tự đặt do mình không cách đặt tính chia trên olm) ta có:
(x + 1) : (x - 1) = 1 (dư 2)
Để D là số nguyên thì 2 chia hết cho x - 1\(\Rightarrow x-1\inƯ\left(2\right)=\left\{1;-1;2;-2\right\}\)
\(\Rightarrow x\in\left\{2;0;3;-1\right\}\)
Vậy \(x\in\left\{2;0;3;-1\right\}\)
Để M thuộc Z thì x + 1 chia hết cho 3
=> \(x=3.k+2\left(k\in Z\right)\)
Vậy với \(x=3.k+2\left(k\in Z\right)\)thì \(M=\frac{x+1}{3}\in Z\)
(x+1) / 3 thuộc Z
=> x+1 chia hết cho 3
=> x+1=3k ( k E Z )
x=3k-1
Với x=3k-1 thì (x+1) / 3 thuộc Z
\(\frac{x+1}{x-1}=\frac{x-1+2}{x-1}=1+\frac{2}{x-1}\)
\(\Rightarrow x-1\inƯ\left(2\right)\)
\(\Rightarrow x-1=\left\{-1;1-2;2\right\}\)
\(\Rightarrow x-1=-1\Rightarrow x=0\)
...........
Tự thay nha
Để \(M\in Z\)thì x + 1 chia hết cho x - 1
=> x - 1 + 2 chia hết cho x - 1
Do x - 1 chia hết cho x - 1 => 2 chia hết cho x - 1
=> \(x-1\in\left\{1;-1;2;-2\right\}\)
=> \(x\in\left\{2;0;3;-1\right\}\)
m=0 ;n=2
phải giải thích hẳn ra chứ