\(m,n\in N\)biết: \(2^m-2^n=1984\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2015

 

\(2^n\left(2^{\left(m-n\right)}-1\right)=2^6.31\)

=> \(2^n=2^6\Rightarrow n=6\)

\(2^{\left(m-n\right)}-1=31\Rightarrow2^{\left(m-n\right)}=32=2^5\Rightarrow m-n=5\Rightarrow m-6=5\Rightarrow m=11\)

=> m=11 và n=6

4 tháng 11 2017

\(2^m\) - \(2^n\) = 1984 hay là \(^{2^m}\)-\(^{2^n}\) = 1984 vậy bạn?

6 tháng 7 2015

211 - 2= 1984

18 tháng 7 2019

2n(2(m−n)−1)=26.31

=> 2n=26⇒n=6

2(m−n)−1=31⇒2(m−n)=32=25⇒m−n=5⇒m−6=5⇒m=11

=> m=11 và n=6

h cho minh nha !

18 tháng 10 2020

* Xét m < n thì 2m < 2n nên VT < 0 mà VP > 0 nên ta loại 

* Xét m = n thì VT = 0 và VP > 0 (loại)

* Xét m > n thì phương trình tương đương với \(2^n\left(2^{m-n}-1\right)=1984=2^6.31\)

m > n nên m - n > 0 suy ra \(2^{m-n}\)luôn chẵn suy ra \(2^{m-n}-1\)lẻ nên \(2^{m-n}-1=31\Rightarrow m-n=5\)

và \(2^n=2^6\Rightarrow n=6\Rightarrow m=11\)

Vậy m = 11; n = 6

a) \(2^{-1}\cdot2^n+4\cdot2^n=9\cdot2^5\)

\(\Rightarrow2^n\cdot\left(2^{-1}+4\right)=9\cdot2^5\)

\(\Rightarrow2^n\cdot4,5=288\)

\(\Rightarrow2^n=64\)

\(\Rightarrow n=6\)

b) \(2^m-2^n=1984\)

\(\Rightarrow2^n\cdot\left(2^{m-n}-1\right)=2^6\cdot31\)

\(\Rightarrow\left\{{}\begin{matrix}2^n=2^6\\2^{m-n}-1=31\end{matrix}\right.\)

\(\Rightarrow n=6\)

\(\Rightarrow2^{m-n}=32\Rightarrow m-n=5\Rightarrow m=11\)

20 tháng 8 2017

\(\dfrac{2n+1}{n-1}=\dfrac{2n-2+3}{n-1}=\dfrac{2n-2}{n-1}+\dfrac{3}{n-1}=2+\dfrac{3}{n-1}\)

\(\Rightarrow3⋮n-1\Rightarrow n-1\inƯ\left(3\right)\)

\(Ư\left(3\right)=\left\{\pm1;\pm3\right\}\)

Xét ước

\(n^2+1⋮n+2\)

\(\Rightarrow n^2+2n-2n+1⋮n+2\)

\(\Rightarrow n^2+2n-2n-4+5⋮n+2\)

\(\Rightarrow n\left(n+2\right)-2\left(n+2\right)+5⋮n+2\)

\(\Rightarrow\left(n-2\right)\left(n+2\right)+5⋮n+2\)

\(\Rightarrow5⋮n+2\)

\(\Rightarrow n+2\inƯ\left(5\right)\)

\(Ư\left(5\right)=\left\{\pm1;\pm5\right\}\)

Xét ước

\(\dfrac{n^2-3n+2}{n+1}\)

\(\Rightarrow n^2-3n+2⋮n+1\)

\(\Rightarrow n^2+n-4n+2⋮n+1\)

\(\Rightarrow n^2+n-4n-4+6⋮n+1\)

\(\Rightarrow n\left(n+1\right)-4\left(n+1\right)+6⋮n+1\)

\(\Rightarrow\left(n-4\right)\left(n+1\right)+6⋮n+1\)

\(\Rightarrow6⋮n+1\Rightarrow n+1\inƯ\left(6\right)\)

\(Ư\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)

Xét ước

25 tháng 10 2017

\(2^{-1}.2^n+2^n=5.2^n\\ \Leftrightarrow\dfrac{1}{2}.2^n+2^n-5.2^n=0\\ \Leftrightarrow2^n\left(\dfrac{1}{2}+1-5\right)=0\\ \Leftrightarrow-\dfrac{7}{2}.2^n=0\\ \Leftrightarrow2^n=0\\ \Leftrightarrow n\in\varnothing\)