Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left(3m+2n\right)\left(7m+3m\right).7\Leftrightarrow3m+\left(7m.2n\right).7\)
\(=7m+\left(14m.n\right).7=20?11?2008\)
\(\Rightarrow7.14+7\left(m.n\right)+m=105m.n+m\)
Ta thấy rằng 105 m . n + m không đồng số với 20?11?2008 => Không thể tìm được m,n khi m,n thuộc tập N
a, n + 4 ⋮ n
Ta có : n ⋮ n
=> Để n + 4 ⋮ thì 4 phải chia hết chọn :
Mà n ∈ N => n ∈ { 1 ; 2 ; 4 }
Vậy với n ∈ { 1 ; 2 ; 4 } thì n + 4 ⋮ n .
b, 3n + 7 ⋮ n
Để 3n + 7 ⋮ n thì :
7 ⋮ n ( vì 3n ⋮ n ) mà n ∈ N
n ∈ { 1 ; 7 }
Vậy với n ∈ { 1 ; 7} thì 3n + 7 ⋮ n .
c, 27 - 5n ⋮ n
Để 27 - 5n ⋮ n thì :
27 ⋮ n ( vì 5n ⋮ n ) mà n ∈ N .
n ∈ { 1 ; 3 ; 9 ; 27 }
Vậy với n ∈ { 1 ; 3 ; 9 ; 27 } thì 27 - 5n ⋮ n .
Gọi (2n+5,6n+11)=d(d\(\inℕ^∗\))
\(\Rightarrow\)2n+5\(⋮\)d
6n+11\(⋮\)d
\(\Rightarrow\)12n+30\(⋮\)d
12n+22\(⋮\)d
\(\Rightarrow\)(12n+30-12n-22)\(⋮\)d
\(\Rightarrow\)8\(⋮\)d
\(\Rightarrow\)d\(\in\)Ư(8)={1,2,4,8}
Mà ta thấy 2n+5 và 6n+11 là hai số lẻ nên ƯCLN(2n+5,6n+11)=lẻ
\(\Rightarrow\)d=lẻ=1
Vậy 2n+5 và 6n+11 nguyên tố cùng nhau (đfcm)
Gọi (2n + 5 , 6n + 11) = d (d thuộc N*)
=> 2n + 5 \(⋮\)d
6n + 11 \(⋮\)d
=> 3(2n + 5) \(⋮\)d
6n + 11 \(⋮\)d
=> 6n + 15 \(⋮\)d
6n + 11 \(⋮\)d
=> (6n + 15) - (6n + 11) \(⋮\)d
=> 6n + 15 - 6n - 11 \(⋮\)d
=> 15 - 11 \(⋮\)d
=> 4 \(⋮\)d
=> d \(\in\) Ư(4)
Mà ta thấy 2n + 5 và 6n + 11 là số lẻ
Vậy d \(\in\) Ư(4) là số lẻ
Mà Ư(4) là số lẻ là {1} => d = 1
Vậy (2n + 5 , 6n + 11) = 1 hay 2n + 5 và 6n + 11 là 2 số nguyên tố cùng nhau
Vì \(n\inℕ\)nên \(\left(7n\right)\inℕ\Rightarrow\left(7n-11\right)\in\varnothing\)
(7n-11)3 = 25.25 + 200
(7n-11)3 = 625 + 200
(7n-11)3 = 825
mà \(825\ne a^3\forall a\inℕ\)
nên \(\left(7n-11\right)\in\varnothing\)
Vậy \(n\in\varnothing\)