Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Để $(d)$ đi qua $A(-1;-2)$ thì: $-2=-m+n(1)$
Để $(d)$ và $(P)$ tiếp xúc nhau thì PT hoành độ giao điểm:
$\frac{1}{4}x^2-mx-n=0$ có nghiệm duy nhất
Điều này xảy ra khi:
$\Delta=m^2+n=0(2)$
Từ $(1);(2)\Rightarrow m=1$ hoặc $m=-2$
Nếu $m=1$ thì $n=-1$
Nếu $m=-2$ thì $n=-4$
Vậy............
Để d đi qua A
\(\Leftrightarrow m.1+n=0\Rightarrow n=-m\Rightarrow y=mx-m\)
Phương trình hoành độ giao điểm (P) và d:
\(\frac{1}{2}x^2=mx-m\Leftrightarrow x^2-2mx+2m=0\) (1)
Để d tiếp xúc (P) \(\Leftrightarrow\) (1) có nghiệm kép
\(\Leftrightarrow\Delta'=m^2-2m=0\Rightarrow\left[{}\begin{matrix}m=0\Rightarrow n=0\\m=2\Rightarrow n=-2\end{matrix}\right.\)
- Với \(m=n=0\Rightarrow x^2=0\Rightarrow x=0\Rightarrow y=0\)
Tọa độ tiếp điểm là \(\left(0;0\right)\)
- Với \(\left[{}\begin{matrix}m=2\\n=-2\end{matrix}\right.\) \(\Rightarrow x^2-4x+4=0\Rightarrow x=2\Rightarrow y=2\)
Tọa độ tiếp điểm là \(\left(2;2\right)\)
Phương trình hoành độ giao điểm là:
\(-\dfrac{1}{4}x^2-mx-n=0\)
THeo đề, ta có:
\(\left\{{}\begin{matrix}m+n=2\\\left(-m\right)^2-4\cdot\left(-\dfrac{1}{4}\right)\cdot\left(-n\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=2-n\\m^2-n=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m=2-n\\n^2-4n+4-n=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}n\in\left\{1;4\right\}\\m\in\left\{1;-2\right\}\end{matrix}\right.\)
1) phương trình hoành độ giao điểm:
\(\dfrac{x^2}{2}=-x+\dfrac{3}{2}\Leftrightarrow x^2=-2x+3\Leftrightarrow x^2+2x-3=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\Rightarrow y=\dfrac{1}{2}\\x=-3\Rightarrow y=\dfrac{9}{2}\end{matrix}\right.\)
vậy giao điểm của (P) và (d) là: A(1;1/2) và B(-3;9/2)
2) mình không nghĩ lớp 9 học điều kiện tiếp xúc của hàm số
Thay x=-1 và y=0 vào (d), ta được:
-m+n=0
=>m=n
=>y=mx+m
PTHĐGĐ là:
1/2x^2-mx-m=0
=>x^2-2mx-2m=0
Δ=(-2m)^2-4*1*(-2m)=4m^2+8m
Để (d) tiếp xúc (P) thì 4m^2+8m=0
=>m(m+2)=0
=>m=-2