Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) MTC : \(\left(x+1\right)\left(x^2-x+1\right)\)
Quy đồng :
\(\frac{x-1}{x^3+1}=\frac{x-1}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(\frac{2x}{x^2-x+1}=\frac{2x\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(\frac{2}{x+1}=\frac{2\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)
b ) MTC : \(10x\left(2y-x\right)\left(2y+x\right)\)
\(\frac{7}{5x}=\frac{7.2.\left(2y-x\right)\left(2y+x\right)}{10x\left(2y-x\right)\left(2y+x\right)}\)
\(\frac{4}{x-2y}=\frac{-4.10x.\left(2y+x\right)}{10x\left(2y-x\right)\left(2y+x\right)}=\frac{-40x\left(2y+x\right)}{10x\left(2y-x\right)\left(2y+x\right)}\)
\(\frac{x-y}{8y^2-2x^2}=\frac{x-y}{2\left(4y^2-x^2\right)}=\frac{x-y}{2\left(2y-x\right)\left(2y+x\right)}=\frac{5x\left(x-y\right)}{10x\left(2y-x\right)\left(2y+x\right)}\)
c ) MTC : \(\left(x+2\right)^3\)
\(\frac{6x^2}{x^3+6x^2+12x+8}=\frac{6x^2}{\left(x+2\right)^3}\)
\(\frac{3x}{x^2+4x+4}=\frac{3x}{\left(x+2\right)^2}=\frac{3x\left(x+2\right)}{\left(x+2\right)^3}\)
\(\frac{2}{2x+4}=\frac{1}{x+2}=\frac{\left(x+2\right)^2}{\left(x+2\right)^3}\)
Đề sai một chút nha bạn : mình sửa bạn thử tham khảo xem đúng không \(P=\frac{12x^2-6x+4}{\left(x-1\right)^2}\)
Mình làm luôn nha
Giải
Theo bài ra , ta có :
\(P=\frac{12x^2-6x+4}{\left(x-1\right)^2}=\frac{12\left(x^2-2x+1\right)+18x-8+10x-10+10}{\left(x-1\right)^2}=\frac{12\left(x-1\right)^2+18\left(x-1\right)+10}{\left(x-1\right)^2}=12+\frac{18}{x-1}+\frac{10}{\left(x-1\right)^2}\)
Đặt \(\frac{2}{x-1}=y\)
Đến đây bạn tự làm tiếp nhé
\(\left(\frac{x}{2}+3\right)\left(5-6x\right)+\left(12x-2\right)\left(\frac{x}{4}+3\right)=0\)
\(\Rightarrow\frac{5x}{2}-3x^2+15-18x+3x^2+36x-\frac{x}{2}-6=0\)
\(\Rightarrow\frac{5x}{2}-\frac{x}{2}+15-6-\left(18x-36x\right)=0\)
\(\Rightarrow2x+9+18x=0\)
\(\Rightarrow20x=-9\)
\(\Rightarrow x=-\frac{9}{20}\)
a: \(A=\left(\dfrac{2\left(2x+1\right)}{2\left(2x+4\right)}-\dfrac{x}{3x-6}-\dfrac{2x^3}{3x^3-12x}\right):\dfrac{6x+13x^2}{24x-12x^2}\)
\(=\left(\dfrac{2x+1}{2\left(x+2\right)}-\dfrac{x}{3\left(x-2\right)}-\dfrac{2x^3}{3x\left(x^2-4\right)}\right):\dfrac{x\left(13x+6\right)}{x\left(24-12x\right)}\)
\(=\left(\dfrac{2x+1}{2\left(x+2\right)}-\dfrac{x}{3\left(x-2\right)}-\dfrac{2x^2}{3\left(x-2\right)\left(x+2\right)}\right):\dfrac{13x+6}{-12\left(x-2\right)}\)
\(=\dfrac{3\left(2x+1\right)\left(x-2\right)-2x\left(x+2\right)-4x^2}{6\left(x+2\right)\left(x-2\right)}\cdot\dfrac{-12\left(x-2\right)}{13x+6}\)
\(=\dfrac{3\left(2x^2-3x-2\right)-2x^2-4x-4x^2}{x-2}\cdot\dfrac{-2}{13x+6}\)
\(=\dfrac{6x^2-9x-6-6x^2-4x}{x-2}\cdot\dfrac{-2}{13x+6}\)
\(=\dfrac{-\left(13x+6\right)\cdot\left(-2\right)}{\left(13x+6\right)\left(x-2\right)}=\dfrac{2}{x-2}\)
b: Để A>0 thì x-2>0
hay x>2
Để A>-1 thì A+1>0
\(\Leftrightarrow\dfrac{2+x-2}{x-2}>0\)
=>x/x-2>0
=>x>2 hoặc x<0
1) \(8x^3+12x^2+6x+1=\left(2x\right)^3+3.\left(2x\right)^2.1+3.2x.1^2+1^3\)
\(=\left(2x+1\right)^3=\left(2.-2+1\right)^3=-27\)
2) \(8x^3-12x+6x-1=\left(2x\right)^3-3.\left(2x\right)^2.1+3.2x.1^2-1^3\)
\(=\left(2x-1\right)^3=\left(2.-\frac{1}{2}-1\right)^3=-8\)
3)\(\left(1-2x\right)^2-\left(3x+1\right)^2=\left(1-2x+3x+1\right)\left(1-2x-3x-1\right)\)
\(=\left(x+2\right)\left(-5x\right)=\left(-2+2\right).\left(-5.-2\right)=0\)
4) \(\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)=\left(2x-3y\right)\left[\left(2x\right)^2+2x.3y+\left(3y\right)^2\right]\)
\(=\left(2x\right)^3-\left(3y\right)^3=\left(2.-\frac{1}{2}\right)^3-\left(3.-\frac{1}{3}\right)^3=-1-\left(-1\right)=0\)
P=(12x^2-6x+4)/(x^2+1)
=(9x^2-6x+1+3x^2+3)/(x^2+1)
=(9x^2-6x+1)/(x^2+1)+(3x^2+3)/(x^2+1)
=(3x-1)^2/(x^2+1)+3(x^2+1)/(x^2+1)
=(3x-1)^2/(x^2+1)+3 >= 3 với mọi x (do (3x-1)^2/(x^2+1) dương với mọi x)
Vậy minP=3,dấu "=" xảy ra <=> x=1/3
3