![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
1: \(=3\left(x+\dfrac{2}{3}\sqrt{x}+\dfrac{1}{3}\right)\)
\(=3\left(x+2\cdot\sqrt{x}\cdot\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{2}{9}\right)\)
\(=3\left(\sqrt{x}+\dfrac{1}{3}\right)^2+\dfrac{2}{3}>=3\cdot\dfrac{1}{9}+\dfrac{2}{3}=1\)
Dấu '=' xảy ra khi x=0
2: \(=x+3\sqrt{x}+\dfrac{9}{4}-\dfrac{21}{4}=\left(\sqrt{x}+\dfrac{3}{2}\right)^2-\dfrac{21}{4}>=-3\)
Dấu '=' xảy ra khi x=0
3: \(A=-2x-3\sqrt{x}+2< =2\)
Dấu '=' xảy ra khi x=0
5: \(=x-2\sqrt{x}+1+1=\left(\sqrt{x}-1\right)^2+1>=1\)
Dấu '=' xảy ra khi x=1
![](https://rs.olm.vn/images/avt/0.png?1311)
DKXD của A, ta có \(x^{2\le5\Rightarrow-\sqrt{5}\le x\le\sqrt{5}}\)
mà \(3x\ge-3\sqrt{5}\)
mặt kkhác \(\sqrt{5-x^2}\ge0\Rightarrow A=3x+x\sqrt{5-x^2}\ge-3\sqrt{5}\)
min A= \(-3\sqrt{5}\)\(\Leftrightarrow x=-\sqrt{5}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
sử dụng bđt \(\hept{\begin{cases}\sqrt{a}+\sqrt{b}\ge\sqrt{a+b}\\\sqrt{a}-\sqrt{b}\le\sqrt{a-b}\end{cases}}\)
cái trên bđt xảy ra khi a=0 hoặc b=0
cái dưới xảy ra khi a=b hoặc b=0
\(B\ge\sqrt{x-5+13-x}\ge\sqrt{8}\)
dấu ''='' xảy ra khi \(\orbr{\begin{cases}x=5\\x=13\end{cases}}\)
\(C\le\sqrt{x-1-x+8}\le\sqrt{7}\)
dấu ''='' xảy ra khi
\(x=8\)
D ,tương tự a
Bạn nguyễn thị lan hương sai maxC rồi nhé, mình chỉ bổ sung phần còn lại
\(B\le\sqrt{\left(1^2+1^2\right)\left(x-5+13-x\right)}=4\)(Bunhiacopski) Dấu bằng xảy ra khi x=9
Tìm maxD cũng vậy
![](https://rs.olm.vn/images/avt/0.png?1311)
\(Q=x\sqrt{x}+y\sqrt{y}=\left(\sqrt{x}\right)^3+\left(\sqrt{y}\right)^3=\left(\sqrt{x}+\sqrt{y}\right)\left(x+y-\sqrt{xy}\right)\)
\(=x+y-\sqrt{xy}\)
Đặt \(a=\sqrt{x},b=\sqrt{y}\) (\(a,b\ge0\))
Ta đưa bài toán trở về dạng tìm max và min của biểu thức \(Q=a^2+b^2-ab\) biết \(a+b=1\)
\(Q=\left(a+b\right)^2-3ab\ge\left(a+b\right)^2-\frac{3.\left(a+b\right)^2}{4}=\frac{\left(a+b\right)^2}{4}=\frac{1}{4}\)
Đẳng thức xảy ra khi \(\hept{\begin{cases}a=b\\a,b\ge0\end{cases}}\Leftrightarrow x=y=\frac{1}{4}\)
Lại có \(\sqrt{x}+\sqrt{y}=1\Rightarrow\hept{\begin{cases}0\le x\le1\\0\le y\le1\end{cases}}\)
Khi đó ta có \(Q\le1\)
Đẳng thức xảy ra khi x = 0 , y = 1 hoặc x = 1 , y = 0
Vậy : minQ = 1/4 <=> x = y = 1/4
maxQ = 1 <=> (x,y) = (0;1) ; (1;0)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ukm
It's very hard
l can't do it
Sorry!
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(A=5+\sqrt{-4x^2-4x}\)
\(A==5+\sqrt{-4x\left(x+1\right)}\)
Có: \(-4x\left(x+1\right)\le0\)
\(\Rightarrow\sqrt{-4x\left(x+1\right)}=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
Vậy: \(Max_A=5\) tại \(\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
b) \(B=\sqrt{x-2}+\sqrt{4-x}\)
ĐKXĐ: \(\hept{\begin{cases}x\ge2\\x\le4\end{cases}}\Rightarrow x\in\left\{2;3;4\right\}\)
Thay \(x=2\Rightarrow\sqrt{2-2}+\sqrt{4-2}=\sqrt{2}\)
Thay \(x=3\Rightarrow\sqrt{3-1}+\sqrt{4-3}=2\)
Thay \(x=4\Rightarrow\sqrt{4-2}+\sqrt{4-4}=\sqrt{2}\)
Vậy: \(Max_B=2\) tại \(x=3\)
Bài 2:
a)\(A=\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}+\sqrt{x^2-6x+9}\)
\(=\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-2\right)^2}+\sqrt{\left(x-3\right)^2}\)
\(=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|\)
\(\ge x-1+0+3-x=2\)
Dấu = khi \(\hept{\begin{cases}x-1\ge0\\x-2=0\\x-3\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge1\\x=2\\x\le3\end{cases}}\Leftrightarrow x=2\)
Vậy MinA=2 khi x=2
![](https://rs.olm.vn/images/avt/0.png?1311)
\(M^2=6+2\sqrt{x^2-6x+5}\)
ta thấy \(\sqrt{x^2-6x+5}\ge0\)
nghĩa là \(6+2\sqrt{x^2-6x+5}\)nhỏ nhất khi căn có giá trị =0
=> min =6
còn max thì nhìn là biết rồi : đa thức cộng thì max khi cái căn đó càng lớn mà Đk X<=1 thì x chạy về âm vô cùng thì cái căn càng lớn
vậy max =+∞
thiếu!