Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
D = 2x2 + 9y2 - 6xy - 6x + 12y + 2012
= [ ( x2 - 6xy + 9y2 ) - 4x + 12y + 4 ] + ( x2 - 2x + 1 ) + 2007
= [ ( x - 3y )2 - 2( x - 3y ).2 + 22 ] + ( x - 1 )2 + 2007
= ( x - 3y + 2 )2 + ( x - 1 )2 + 2007
\(\hept{\begin{cases}\left(x-3y+2\right)^2\\\left(x-1\right)^2\end{cases}}\ge0\forall x\Rightarrow\left(x-3y+2\right)^2+\left(x-1\right)^2+2007\ge2007\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-3y+2=0\\x-1=0\end{cases}}\Rightarrow x=y=1\)
=> MinD = 2007 <=> x = y = 1
E = x2 - 2xy + 4y2 - 2x - 10y + 29 ( -10y mới ra đc nhé, mò mãi :v )
= [ ( x2 - 2xy + y2 ) - 2x + 2y + 1 ] + ( 3y2 - 12y + 12 ) + 16
= [ ( x - y )2 - 2( x - y ) + 12 ] + 3( y2 - 4y + 4 ) + 16
= ( x - y - 1 )2 + 3( y - 2 )2 + 16
\(\hept{\begin{cases}\left(x-y-1\right)^2\\3\left(y-2\right)^2\end{cases}}\ge0\forall x,y\Rightarrow\left(x-y-1\right)^2+3\left(y-2\right)^2+16\ge16\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-y-1=0\\y-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=3\\y=2\end{cases}}\)
=> MinE = 16 <=> x = 1 ; y = 2
F = \(\frac{3}{2x-x^2-4}\)
Để F đạt GTNN => 2x - x2 - 4 đạt GTLN
Ta có : 2x - x2 - 4 = -( x2 - 2x + 1 ) - 3 = -( x - 1 )2 - 3 ≤ -3 < 0 ∀ x
Đẳng thức xảy ra <=> x - 1 = 0 => x = 1
=> MinF = \(\frac{3}{-3}=-1\)<=> x = 1
G = \(\frac{2}{6x-5-9x^2}\)
Để G đạt GTNN => 6x - 5 - 9x2 đạt GTLN
Ta có 6x - 5 - 9x2 = -9( x2 - 2/3x + 1/9 ) - 4 = -9( x - 1/3 )2 - 4 ≤ -4 < 0 ∀ x
Đẳng thức xảy ra <=> x - 1/3 = 0 => x = 1/3
=> MinG = \(\frac{2}{-4}=-\frac{1}{2}\)<=> x = 1/3
) \(\dfrac{x^3+8y^3}{2y+x}\)
\(=\dfrac{x^3+\left(2y\right)^3}{x+2y}\)
\(=\dfrac{\left(x+2y\right)\left[x^2+x.2y+\left(2y\right)^2\right]}{x+2y}\)
\(=x^2+2xy+4y^2\)
b) \(\dfrac{a-1}{2\left(a-4\right)}+\dfrac{a}{a-4}\) MTC: \(2\left(a-4\right)\)
\(=\dfrac{a-1}{2\left(a-4\right)}+\dfrac{2a}{2\left(a-4\right)}\)
\(=\dfrac{a-1+2a}{2\left(a-4\right)}\)
\(=\dfrac{3a-1}{2\left(a-4\right)}\)
c) \(\dfrac{x^3+3x^2y+3xy^2+y^3}{2x+2y}\)
\(=\dfrac{\left(x+y\right)^3}{2\left(x+y\right)}\)
\(=\dfrac{\left(x+y\right)^2}{2}\)
d) \(\left(x-5\right)^2+\left(7-x\right)\left(x+2\right)\)
\(=\left(x^2-2.x.5+5^2\right)+\left(7x+14-x^2-2x\right)\)
\(=x^2-10x+25+7x+14-x^2-2x\)
\(=39-5x\)
e) \(\dfrac{3x}{x-2}-\dfrac{2x+1}{2-x}\)
\(=\dfrac{3x}{x-2}+\dfrac{2x+1}{x-2}\)
\(=\dfrac{3x+2x+1}{x-2}\)
\(=\dfrac{5x+1}{x-2}\)
h) \(\dfrac{1}{3x-2}-\dfrac{1}{3x+2}-\dfrac{3x+6}{4-9x^2}\)
\(=\dfrac{1}{3x-2}-\dfrac{1}{3x+2}+\dfrac{3x+6}{9x^2-4}\)
\(=\dfrac{1}{3x-2}-\dfrac{1}{3x+2}+\dfrac{3x+6}{\left(3x-2\right)\left(3x+2\right)}\) MTC: \(\left(3x-2\right)\left(3x+2\right)\)
\(=\dfrac{3x+2}{\left(3x-2\right)\left(3x+2\right)}-\dfrac{3x-2}{\left(3x-2\right)\left(3x+2\right)}+\dfrac{3x+6}{\left(3x-2\right)\left(3x+2\right)}\)
\(=\dfrac{\left(3x+2\right)-\left(3x-2\right)+\left(3x+6\right)}{\left(3x-2\right)\left(3x+2\right)}\)
\(=\dfrac{3x+2-3x+2+3x+6}{\left(3x-2\right)\left(3x+2\right)}\)
\(=\dfrac{3x+10}{\left(3x-2\right)\left(3x+2\right)}\)
d, (x2 + 4x + 8)2 + 3x(x2 + 4x + 8) + 2x2 = 0
Đặt x2 + 4x + 8 = t ta được:
t2 + 3xt + 2x2 = 0
\(\Leftrightarrow\) t2 + xt + 2xt + 2x2 = 0
\(\Leftrightarrow\) t(t + x) + 2x(t + x) = 0
\(\Leftrightarrow\) (t + x)(t + 2x) = 0
Thay t = x2 + 4x + 8 ta được:
(x2 + 4x + 8 + x)(x2 + 4x + 8 + 2x) = 0
\(\Leftrightarrow\) (x2 + 5x + 8)[x(x + 4) + 2(x + 4)] = 0
\(\Leftrightarrow\) (x2 + 5x + \(\frac{25}{4}\) + \(\frac{7}{4}\))(x + 4)(x + 2) = 0
\(\Leftrightarrow\) [(x + \(\frac{5}{2}\))2 + \(\frac{7}{4}\)](x + 4)(x + 2) = 0
Vì (x + \(\frac{5}{2}\))2 + \(\frac{7}{4}\) > 0 với mọi x
\(\Rightarrow\left[{}\begin{matrix}x+4=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=-2\end{matrix}\right.\)
Vậy S = {-4; -2}
Mình giúp bn phần khó thôi!
Chúc bn học tốt!!
c) \(\frac{1}{x-1}\)+\(\frac{2x^2-5}{x^3-1}\)=\(\frac{4}{x^2+x+1}\) (ĐKXĐ:x≠1)
⇔\(\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\)+\(\frac{2x^2-5}{\left(x-1\right)\left(x^2+x+1\right)}\)=\(\frac{4\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
⇒x2+x+1+2x2-5=4x-4
⇔3x2-3x=0
⇔3x(x-1)=0
⇔x=0 (TMĐK) hoặc x=1 (loại)
Vậy tập nghiệm của phương trình đã cho là:S={0}
Trả lời:
a, \(\left(2x-5\right)^3=\left(2x\right)^3-3.\left(2x\right)^2.5+3.2x.5^2-5^3=8x^3-60x^2+150x-125\)
b, \(\left(2x+3\right)\left(4x^2-6x+9\right)=\left(2x+3\right)\left[\left(2x\right)^2-2x.3+3^2\right]=\left(2x\right)^3+3^3=8x^3+9\)
c, \(\left(\frac{1}{2}x+1\right)^3=\left(\frac{1}{2}x\right)^3+3\left(\frac{1}{2}x\right)^21+3\cdot\frac{1}{2}x.1^2+1^3=\frac{1}{8}x^3+\frac{3}{4}x^2+\frac{3}{2}x+1\)
d, \(\left(x-\frac{2}{3}y\right)\left(x^2+\frac{2}{3}xy+\frac{4}{9}y^2\right)=x^3-\left(\frac{2}{3}y\right)^3=x^3-\frac{8}{27}y^3\)
6) Ta có
\(A=\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{x+2y}\)
\(=\frac{x^4}{xy+2xz}+\frac{y^4}{yz+2xy}+\frac{z^4}{zx+2yz}\)
\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{xy+2xz+yz+2xy+zx+2yz}\)
\(\Leftrightarrow A\ge\frac{1}{3\left(xy+yz+zx\right)}\ge\frac{1}{3\left(x^2+y^2+z^2\right)}=\frac{1}{3}\)
a) Đặt \(x=1+m\)và \(y=1-m\)khi đó \(x+y=2\)
Ta có: \(C=x^2+y^2+7=\left(1+m\right)^2+\left(1-m\right)^2+7\)
\(=1+2m+m^2+1-2m+m^2+7=2m^2+9\)
Vì \(m^2\ge0\forall x\)\(\Rightarrow2m^2\ge0\forall m\)\(\Rightarrow2m^2+9\ge9\forall m\)
Dấu " = " xảy ra \(\Leftrightarrow m=0\)\(\Rightarrow x=y=1\)
Vậy \(minC=9\)\(\Leftrightarrow x=y=1\)