Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=3x^2+5x-2\)
\(A=3\left(x^2+\frac{5}{3}x-\frac{2}{3}\right)\)
\(A=3\left(x^2+2.\frac{5}{6}x+\left(\frac{5}{6}\right)^2-\frac{49}{36}\right)\)
\(A=3\left(x^2+2.\frac{5}{6}x+\left(\frac{5}{6}\right)^2\right)-\frac{49}{12}\)
\(A=3\left(x+\frac{5}{6}\right)^2-\frac{49}{12}\)
Vì \(3\left(x+\frac{5}{6}\right)^2\ge0\)
Do đó \(3\left(x+\frac{5}{6}\right)^2-\frac{49}{12}\ge-\frac{49}{12}\)
Dấu = xảy ra khi \(x+\frac{5}{6}=0\Rightarrow x=-\frac{5}{6}\)
Vậy Min A=\(-\frac{49}{12}\) khi x=\(-\frac{5}{6}\)
mk làm ý a thôi, mấy ý sau dựa vào mà làm.
A = \(3x^2+5x-2\)
=> \(\frac{A}{3}=x^2+\frac{5}{3}x-\frac{2}{3}\)(chia cả 2 vế cho 3)
\(\Leftrightarrow\frac{A}{3}=x^2+2.x.\frac{5}{6}+\left(\frac{5}{6}\right)^2-\frac{49}{36}\)
\(\Leftrightarrow\frac{A}{3}=\left(x+\frac{5}{6}\right)^2-\frac{49}{36}\)
\(\Rightarrow A=3\left(x+\frac{5}{6}\right)^2-\frac{49}{12}\ge-\frac{49}{12}\)
Đẳng thức xảy ra <=> x = - 5/6.
Vậy Min A = - 49/12 khi và chỉ khi x = - 5/6.
Bài 1 :
=-5(x^2+4/5x+19/25)
=-5(x^2+2x.2/5+4/25+3/5)
=-5(x+2/5)^2-3
Vì (x+2/5)^2 lớn hơn hoặc bằng 0 =>-5(x+2/5)^2-3 nhỏ hơn hoặc bằng-3
Vậy Min là-3
=> x + 2y = 0 hoặc x2 - 2xy + 4y2 = 0
còn lại thì e bó tay . canh
(x+2y)(x2-2xy+4y2)=0
<=>x3+(2y)3=0
<=>x3+8y3=0 (1)
(x-2y)(x2+2xy+4y2)=0
<=>x3-(2y)3=0
<=>x3-8y3=0 (2)
từ (1) và (2)=>x3+8y3-x3+8y3=0
<=>16y3=0
<=>y=0
thay y=0 vào (1) ta đc:
x3-0=0
<=>x3=0
<=>x=0
(x-y)2 +(y -2)2 +5 -1-4
GTNN B = 0
( bài toán trg sách bồi dưỡng hsg8)
À ờ bài này vẫn làm được :)
A = x2 + 3y2 + 2xy + 4y + 5
= ( x2 + 2xy + y2 ) + ( 2y2 + 4y + 2 ) + 3
= ( x + y )2 + 2( y2 + 2y + 1 ) + 3
= ( x + y )2 + 2( y + 1 )2 + 3 ≥ 3 ∀ x
Dấu "=" xảy ra <=> x = 1 ; y = -1
=> MinA = 3 <=> x = 1 ; y = -1
a ) \(x^2-x+1\)
\(\Leftrightarrow\left(x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2\right)+\dfrac{3}{4}\)
\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Ta có : \(\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\)
\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Vậy GTNN là \(\dfrac{3}{4}\Leftrightarrow x=\dfrac{1}{2}.\)
\(\left(x+2y\right)\left(x^2-2xy+4y^2\right)=0\)
\(\Leftrightarrow x^3+8y^3=0\) (*)
\(\left(x-2y\right)\left(x^2+2xy+4y^2\right)=16\)
\(\Leftrightarrow x^3-8y^3=16\) (**)
Từ (*) và (**) cộng theo vế:
\(\Leftrightarrow2x^3=16\Leftrightarrow x^3=8\Leftrightarrow x=2\)
Thay x = 2 và (*):
\(\Leftrightarrow2^3+8y^3=0\Leftrightarrow8y^3=-8\Leftrightarrow y^3=-1\Leftrightarrow y=-1\)
Ta có : \(A=x^2+2y^2+2xy-4y-3\)
\(=\left(x^2+2xy+y^2\right)+\left(y^2-4y+4\right)-7\)
\(=\left(x+y\right)^2+\left(y-2\right)^2-7\)
Có \(\hept{\begin{cases}\left(x+y\right)^2\ge0\forall x,y\\\left(y-2\right)^2\ge0\forall y\end{cases}}\Rightarrow\left(x+y\right)^2+\left(y-2\right)^2-7\ge-7\forall x,y\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+y=0\\y-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-2\\y=2\end{cases}}\)
=> MinA = -7 <=> x = -2 ; y = 2
? tìm min