K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2017

MinA=18

15 tháng 7 2017

VÌ SAO min=18 giải ra đi

21 tháng 6 2021

a) (2x + 1)(1 - 2x) + (1 - 2x)2 = 18

= ( 1 - 2x) \(\left[\left(2x+1+1-2x\right)\right]\) = 18

= 2(1 - 2x)  - 18 = 0

= 2 - 4x - 18 = 0

= -16 - 4x = 0

= -4x = 16

= x = \(\dfrac{16}{-4}=-4\)

b) 2(x + 1)2 -(x - 3)(x + 3) - (x - 4)2 = 0

= 2 (x2 + 2x + 1) - (x2 - 9) - (x2 - 8x + 16) = 0

= 2x2 + 4x + 2 - x2 + 9 - x2 + 8x - 16 = 0

= 12x - 5 = 0

= 12x = 5

= x = \(\dfrac{5}{12}\)

c) (x - 5)2 - x(x - 4) = 9

= x2 - 10x + 25 - x2 + 4x - 9 = 0

= -6x + 16 = 0

= -6x = -16

= x = \(\dfrac{-16}{-6}=\dfrac{8}{3}\)

d) (x - 5)2 + (x - 4)(1 - x)

= x2 - 10x + 25 + 5x - x2 - 4 = 0

= -5x + 21 = 0

= -5x = -21

= x = \(\dfrac{-21}{-5}=\dfrac{21}{5}\) 

 Chúc bạn học tốt

31 tháng 12 2017

A = (x^4-2x^2+1)+(3x^2-6x+3)+5

   = (x^2-1)^2+3.(x-1)^2+5 >= 5 

Dấu "=" xảy ra <=>  x^2-1=0 và x-1=0 <=> x=1

Vậy Min A = 5 <=> x=1

k mk nha

1 tháng 1 2018

A=\(x^4+x^2-6x+9\)

\(=\left(x^4-2x^2+1\right)\left(3x^2-6x+3\right)+5\)

\(=\left[\left(x^2\right)^2-2x^2.1+1^2\right]+3.\left(x^2-2x+1\right)+5\)

\(=\left(x^2-1\right)^2+3.\left(x-1\right)^2+5\ge5\)

Min A=5 khi \(\hept{\begin{cases}x^2-1=0\\x-1=0\end{cases}}\)=> x = 1

26 tháng 7 2016

a)x=0

b)x=-2

9 tháng 1 2022

a)=> x2 + 6x + 9 - x2 + 4x = 39 => 10x = 30 => x = 3
b) => x(x - 9) + 2(x -9) = 0 => (x+2)(x-9) = 0 
+)th1: x + 2 = 0 => x = -2
+)th2: x - 9 =0 => x = 9 

AH
Akai Haruma
Giáo viên
7 tháng 3 2020

Lời giải:

a) Xét tử thức:

\((x^2+y)\left(y+\frac{1}{4}\right)+x^2y^2+\frac{3}{4}\left(y+\frac{1}{3}\right)=x^2y+\frac{x^2}{4}+y^2+\frac{y}{4}+x^2y^2+\frac{3}{4}y+\frac{1}{4}\)

\(=x^2y+\frac{x^2}{4}+y+y^2+x^2y^2+\frac{1}{4}\)

\(=(x^2y+\frac{x^2}{4}+x^2y^2)+(y^2+y+\frac{1}{4})=x^2(y^2+y+\frac{1}{4})+(y^2+y+\frac{1}{4})\)

\(=(x^2+1)(y+\frac{1}{2})^2\)

Xét mẫu thức:
\(x^2y^2+1+(x^2-y)(1-y)=x^2y^2+1+x^2-x^2y-y+y^2\)

\(=(x^2y^2-x^2y+x^2)+(y^2-y+1)=x^2(y^2-y+1)+(y^2-y+1)\)

\(=(y^2-y+1)(x^2+1)\)

Do đó:

\(A=\frac{(y+\frac{1}{2})^2}{y^2-y+1}\) là giá trị không phụ thuộc vào $x$

b)

\((y+\frac{1}{2})^2\geq 0, \forall y\in\mathbb{R}\)

\(y^2-y+1=(y-\frac{1}{2})^2+\frac{3}{4}>0, \forall y\in\mathbb{R}\)

Do đó: $A=\frac{(y+\frac{1}{2})^2}{y^2-y+1}\geq 0$

Hay $A_{\min}=0$ tại $y=\frac{-1}{2}$

27 tháng 7 2016

a)5.x.(1-2.x)-3.x.(x+18)=0
   x.[5.(1-2.x)-3.(x+18)] =0
   x.[5- 10.x -3.x -54]    =0
   x.[-13.x-49]              =0
=>x=0 hoặc -13.x-49=0
    x=0 hoặc      x     = -49/13

b)5.x-3{4.x-2[4.x-3(5.x-2)]}=182
   5.x-3{4.x-2[-11.x+6]}     =182
   5.x-3{26.x-12}               =182
   5.x-78.x+36                  =182
   x.(5-78)                        = 146
   -73.x                            =146
    x                                = 2

2 tháng 2 2022

a) ĐKXĐ `x + 3 ne 0 ` và `x -3  ne 0` và ` 9 -x^2 ne 0`

`<=> x ne -3 ` và `x ne 3` và `(3-x)(3+x) ne 0`

`<=> x ne -3` và `x ne 3`

b) Với `x ne +-3` ta có:

`P= 3/(x+3)  + 1/(x-3)- 18/(9-x^2)`

`P= [3(x-3)]/[(x-3)(x+3)] + (x+3)/[(x-3)(x+3)] + 18/[(x-3)(x+3)]`

`P= (3x-9)/[(x-3)(x+3)] + (x+3)/[(x-3)(x+3)] + 18/[(x-3)(x+3)]`

`P= (3x-9+x+3+18)/[(x-3)(x+3)]`

`P= (4x +12)/[(x-3)(x+3)]`

`P= (4(x+3))/[(x-3)(x+3)]`

`P= 4/(x-3)`

Vậy `P= 4/(x-3)` khi `x ne +-3`

c) Để `P=4`

`=> 4/(x-3) =4`

`=> 4(x-3) = 4`

`<=> 4x - 12=4`

`<=> 4x = 16

`<=> x= 4` (thỏa mãn ĐKXĐ)

Vậy `x=4` thì `P =4`

2 tháng 2 2022

a) P xác định <=> \(\left\{{}\begin{matrix}x+3\ne0\\x-3\ne0\end{matrix}\right.\)

                      <=>\(\left\{{}\begin{matrix}x\ne-3\\x\ne3\end{matrix}\right.\)

                      <=>\(x\ne\pm3\)

b)Với \(x\ne\pm3\)

 \(P=\dfrac{3}{x+3}+\dfrac{1}{x-3}-\dfrac{18}{9-x^2}\)

     \(=\dfrac{3}{x+3}+\dfrac{1}{x-3}+\dfrac{18}{\left(x+3\right)\left(x-3\right)}\)

     \(=\dfrac{3\left(x-3\right)+\left(x+3\right)+18}{\left(x+3\right)\left(x-3\right)}\)

     \(=\dfrac{3x-9+x+3+18}{\left(x+3\right)\left(x-3\right)}\)

     \(=\dfrac{4x+12}{\left(x+3\right)\left(x-3\right)}\)

     \(=\dfrac{4\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}=\dfrac{4}{x-3}\)

c)Với \(x\ne\pm3\)

P=4 <=>\(\dfrac{4}{x-3}=4\)

       <=>\(4x-12=4\)

       <=>\(4x=16\)

       <=>x=4(tm)

Vậy x=4