Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A=(x-4)2+ |y-1|-6
Ta thấy:
(x-4)² ≥ 0 ∀ x
|y-1| ≥ 0 ∀ y
⇒ (x-4)2+ |y-1| ≥ 0 ∀ x, y
⇒ (x-4)2+ |y-1|-6 ≥ -6 ∀ x, y
⇒ A ≥ -6 ∀ x, y
Dấu '=' xảy ra khi: \(\left[{}\begin{matrix}x-4=0\\y-1=0\end{matrix}\right.\) ⇔ \(\left[{}\begin{matrix}x=4\\y=1\end{matrix}\right.\)
Vậy Min A = -6 tại x=4, y = 1
b) B= (x2-1)4+2.|2y-4|-3
Ta thấy:
(x2-1)4 ≥ 0 ∀ x
|2y-4| ≥ 0 ∀ y
⇒ 2|2y-4| ≥ 0 ∀ y
⇒ (x2-1)4+2.|2y-4| ≥ 0 ∀ x, y
⇒ (x2-1)4+2.|2y-4|-3 ≥ -3 ∀ x, y
⇒B ≥ -3 ∀ x, yDấu '=' xảy ra ra khi: \(\left[{}\begin{matrix}x^2-1=0\\2y-4=0\end{matrix}\right.\) ⇔ \(\left[{}\begin{matrix}x^2=1\\2y=4\end{matrix}\right.\) ⇔ \(\left[{}\begin{matrix}x=\pm1\\y=2\end{matrix}\right.\)Vậy Min B = -3 tại x=\(\pm\)1, y = 2
Bài 3:
a) Đặt f(x)=0
\(\Leftrightarrow x^2-4x+3=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
b) Đặt f(x)=0
\(\Leftrightarrow x^2-7x+12=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=4\end{matrix}\right.\)
Bài 3:
c) Đặt f(x)=0
\(\Leftrightarrow x^2+2x+1=0\)
\(\Leftrightarrow\left(x+1\right)^2=0\)
\(\Leftrightarrow x+1=0\)
hay x=-1
d) Đặt f(x)=0
\(\Leftrightarrow x^4+2=0\)
\(\Leftrightarrow x^4=-2\)(Vô lý)
\(A=\left|x\right|+\left|8-x\right|\)
Áp dụng bđt:
\(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)
\(A\ge\left|x+8-x\right|\)
\(A\ge8\)
Dấu "=" xảy ra khi:
\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge0\\8-x\ge0\Rightarrow x\le8\end{matrix}\right.\\\left\{{}\begin{matrix}x< 0\\8-x< 0\Rightarrow x>8\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow0\le x\le8\)
a: \(C\left(x\right)=A\left(x\right)+B\left(x\right)\)
\(=3x^4-4x^3+5x^2-4x-3-3x^4+4x^3-5x^2+2x+6\)
=-2x+3
b: Đặt C(x)=0
=>-2x+3=0
hay x=3/2
a)A=|2-x|+x+3
|2-x|>=2-x với mọi x
=>A>=2-x+x+3=5
dấu "=" xảy ra khi và chỉ khi 2-x=0=>x=2
vậy min A=5 khi và chỉ khi x=2
b)B=|x-1|+|2-x|
|x-1|>=x-1 với mọi x
|2-x|>=2-x với mọi x
=>B>=x-1+2-x=1
dấu "=" xảy ra khi và chỉ khi (x-1)(2-x)>=0
<=>1<=x<=2
vậy min B=1 khi và chỉ khi 1<=x<=2