\(P=\frac{x^2+x+1}{x^2+2x+2}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

tích mình với

ai tích mình

mình tích lại

thanks

14 tháng 2 2019

Tích mình đi mình tích lại

31 tháng 8 2018

Bài 3: \(A=\frac{\left(2a+b+c\right)\left(a+2b+c\right)\left(a+b+2c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

Đặt a+b=x;b+c=y;c+a=z

\(A=\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz}\ge\frac{2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}}{xyz}=\frac{8xyz}{xyz}=8\)

Dấu = xảy ra khi \(a=b=c=\frac{1}{3}\)

31 tháng 8 2018

Bài 4: \(A=\frac{9x}{2-x}+\frac{2}{x}=\frac{9x-18}{2-x}+\frac{18}{2-x}+\frac{2}{x}\ge-9+\frac{\left(\sqrt{18}+\sqrt{2}\right)^2}{2-x+x}=-9+\frac{32}{2}=7\)

Dấu = xảy ra khi\(\frac{\sqrt{18}}{2-x}=\frac{\sqrt{2}}{x}\Rightarrow x=\frac{1}{2}\)

31 tháng 1 2018

đặt các biểu thức trên bằng a rồi nhân lên dùng denta

24 tháng 12 2017

https://olm.vn/hoi-dap/question/1117914.html

22 tháng 7 2016

a Tách \(M=2+\frac{4xy}{x^2+2xy+y^2}=2+\frac{4xy}{\left(x+y\right)^2}\le2+1=3\)
Dấu = xảy ra khi và chỉ khi x=y và x+y=2015 <=>x=y=2015/2
b,:\(N\ge\frac{\left(1+\frac{2015}{x}+1+\frac{2015}{y}\right)^2}{2}=\frac{\left(2+2015\left(\frac{1}{x}+\frac{1}{y}\right)\right)^2}{2}\)
áp dunngj svac =>\(N\ge\frac{\left(2+2015\left(\frac{\left(1+1\right)^2}{x+y}\right)\right)^2}{2}=\frac{\left(2+\frac{2015.4}{2015}\right)^2}{2}=18\)
dấu = xảy ra khi và chỉ khi x=y và x+y=2015 <=>x=y=2015/2

22 tháng 7 2016

Cảm ơn bn nha :))

30 tháng 6 2019

\(y=\frac{2x+1}{x^2+2}\)

\(\Leftrightarrow yx^2-2x+2y-1=0\)(1)

Ta có: y thuộc miền giá trị của hàm số khi và chỉ khi (1) có nghiệm

Với: \(y=0\) thì x = -1/2

Với: \(y\ne0\) thì (1) có nghiệm khi: \(\Delta^'\ge0\)

 \(\Leftrightarrow1^2-y\left(2y-1\right)\ge0\)

\(\Leftrightarrow-2y^2+y+1\ge0\)

\(\Leftrightarrow2y^2-y-1\le0\)

\(\Leftrightarrow-\frac{1}{2}\le y\le1\)

Vậy: Min y = -1/2 và Max y = 1

=.= hk tốt!!

30 tháng 6 2019

\(y=\frac{2x+1}{x^2+2}\Leftrightarrow x^2y+2y-2x-1=0\)

Pt có nghiệm x<=>\(\Delta'=1-y\left(2y-1\right)=-2y^2+y+1\ge0\)\(\Leftrightarrow-\frac{1}{2}\le y\le1\)

Max y=1 \(\Leftrightarrow x^2-2x+1=0\Leftrightarrow x=1\)

\(Miny=-\frac{1}{2}\Leftrightarrow-\frac{1}{2}x^2-2x-2=0\Leftrightarrow x=-2\)