Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vào link này nhé
https://h.vn/hoi-dap/question/519160.html?pos=1454413
Làm tạm max, min chưa nhìn thấy điểm rơi :(
Với các số không âm \(a;b;c;d\) ta có:
\(a+b+c+d\ge4\sqrt[4]{abcd}\Rightarrow abcd\le\left(\frac{a+b+c+d}{4}\right)^4\)
Do \(x;y\) không âm \(\Rightarrow xy^2\ge0\Rightarrow P< 0\) nếu \(8-x-y< 0\) và \(P\ge0\) nếu \(8-x-y\ge0\Rightarrow P_{max}\) nếu có sẽ xảy ra khi \(8-x-y\ge0\)
Xét trường hợp \(8-x-y\ge0\) ta có:
\(P=4x.\frac{y}{2}.\frac{y}{2}\left(8-x-y\right)\le4\left(\frac{x+\frac{y}{2}+\frac{y}{2}+8-x-y}{4}\right)^4=64\)
\(\Rightarrow P_{max}=64\) khi \(\left\{{}\begin{matrix}x=\frac{y}{2}\\x=8-x-y\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2\\y=4\end{matrix}\right.\)
Làm nốt min
\(P=xy^2\left(8-x-y\right)=xy^2.\left[8-\left(x+y\right)\right]\ge x.\frac{y}{2}.\frac{y}{2}.\left(8-12\right).4=x.\frac{y}{2}.\frac{y}{2}.\left(-16\right)\)
Áp dụng BĐT AM-GM ta có:
\(a+b+c\ge3.\sqrt[3]{abc}\)
\(\Leftrightarrow\left(\frac{a+b+c}{3}\right)^3\ge abc\)
Dấu " = " xảy ra <=> a=b=c
Áp dụng:\(P\ge x.\frac{y}{2}.\frac{y}{2}.\left(8-12\right).4=x.\frac{y}{2}.\frac{y}{2}.\left(-16\right)\ge\left(\frac{x+\frac{y}{2}+\frac{y}{2}}{3}\right)^3.\left(-16\right)=\left(\frac{12}{3}\right)^3.\left(-16\right)=4^3.\left(-16\right)=-1024\)Dấu " = " xảy ra <=> \(\left\{{}\begin{matrix}x+y=12\\x=\frac{y}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=8\\x=4\end{matrix}\right.\)
KL:.......................
Ta có : \(\left(x^2-y^2\right)^2+4x^2y^2+x^2-2y^2=0\)
\(\Leftrightarrow\left(x^2+y^2\right)^2-2.\left(x^2+y^2\right)+1=1-3x^2\)
\(\Leftrightarrow\left(x^2+y^2-1\right)^2=1-3x^2\le1\forall x\)
\(\Rightarrow\left(x^2+y^2-1\right)\le1\)
\(\Rightarrow-1\le x^2+y^2-1\le1\)
\(\Rightarrow0\le x^2+y^2\le2\)
\(C=x^2+y^2\) min tại \(x=y=0\)
\(C=x^2+y^2\)max tại \(x=0,y=\sqrt{2}\)
Lời giải:
Tìm max:
Áp dụng BĐT Bunhiacopxky:
\(P^2=(\sqrt{1+2x}+\sqrt{1+2y})^2\leq (1+2x+1+2y)(1+1)=4(x+y+1)\)
Áp dụng BĐT AM-GM:
\((x+y)^2\leq 2(x^2+y^2)=2\Rightarrow x+y\leq \sqrt{2}\)
\(\Rightarrow P^2\leq 4(x+y+1)\leq 4(\sqrt{2}+1)\)
\(\Rightarrow P\leq 2\sqrt{\sqrt{2}+1}\)
Vậy \(P_{\max}=2\sqrt{\sqrt{2}+1}\Leftrightarrow x=y=\sqrt{\frac{1}{2}}\)
Tìm min:
Vì \(x^2+y^2=1\Rightarrow x^2\leq 1; y^2\leq 1\Rightarrow x,y\leq 1\). Kết hợp với \(x,y\geq 0\)
\(\Rightarrow 0\leq x,y\leq 1\Rightarrow x^2\leq x; y^2\leq y\Rightarrow x^2+y^2\leq x+y\)
Do đó:
\(P^2=2+2(x+y)+2\sqrt{(1+2x)(1+2y)}\)
\(=2+2(x+y)+2\sqrt{1+2(x+y)+4xy}\geq 2+2(x^2+y^2)+2\sqrt{1+2(x^2+y^2)}=4+2\sqrt{3}\)
\(\Rightarrow P\geq \sqrt{4+2\sqrt{3}}=\sqrt{3}+1\)
Vậy \(P_{\min}=\sqrt{3}+1\Leftrightarrow (x,y)=(1,0)\) và hoán vị.
Đặt a= 1-x
b=1-y
c=1-z
\(\Rightarrow\) a+b+c= 1-x+1-y+1-z=0 và ;b;c=[-1;1]
khi đó A=(1-a)^4 + (1-b)^4 + (1-c)^4 + 12abc
=3-4(a+b+c) + 6 ( \(a^2+b^2+c^2\))-\(4\left(a^3+b^3+c^3\right)+a^4+b^4+c^4+12abc\)
=\(3+6\left(a^2+b^2+c^2\right)-4.3abc-12abc\) do\(\left(a^3+b^3+c^3=abc\right)\)
=\(3+6\left(a^2+b^2+c^2\right)+a^4+b^4+c^4\ge3\)
dấu bằng xảy ra khi a=b=c=0
\(\Leftrightarrow\)x=y=z=1
Áp dụng bất đẳng thức Bunhiacopxki cho 2 bộ số (1+2x, 1+2y) và (1,1) ta có:
\(P^2\le\left[\left(\sqrt{1+2x}\right)^2+\left(\sqrt{1+2y}\right)^2\right]\left(1^2+1^2\right)=2\left(2x+2y+1\right)\le2\left(x^2+1+y^2+1+1\right)=2.4=8\)
\(\Rightarrow P\le\sqrt{8}\)
Vậy GTLN của P là \(\sqrt{8}\) khi \(x=y=\dfrac{1}{2}\)
Dấu "=" khi \(\left\{{}\begin{matrix}\sqrt{1+2x}=\sqrt{1+2y}\\x,y>0\\x^2+y^2=1\end{matrix}\right.\Leftrightarrow x=y=\dfrac{1}{2}\)