\(\sqrt{\left(x+1995\right)^2}+\sqrt{\left(x+1996\right)^2}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2017

bạn nào đúng mk k nha okay!!!

10 tháng 12 2017

minh giong vu the qang huy

12 tháng 3 2020

a/Viết đề mà cx sai đc nữa: \(\left(\frac{x+2}{98}+1\right)\left(\frac{x+3}{97}+1\right)=\left(\frac{x+4}{96}+1\right)\left(\frac{x+5}{95}+1\right)\)

\(\Leftrightarrow\frac{x+100}{98}.\frac{x+100}{97}-\frac{x+100}{96}.\frac{x+100}{95}=0\)

\(\Leftrightarrow\left(x+100\right)^2\left(\frac{1}{98.97}-\frac{1}{96.95}\right)=0\)

\(\Rightarrow x=-100\)

b/\(\Leftrightarrow\left(\frac{x+1}{1998}+1\right)+\left(\frac{x+2}{1997}+1\right)=\left(\frac{x+3}{1996}+1\right)+\left(\frac{x+4}{1995}+1\right)\)

\(\Leftrightarrow\frac{x+1999}{1998}+\frac{x+1999}{1997}-\frac{x+1999}{1996}-\frac{x+1999}{1995}=0\)

\(\Leftrightarrow\left(x+1999\right)\left(...\right)=0\Rightarrow x=-1999\)

12 tháng 3 2020

b,\(\frac{x+1}{1998}+\frac{x+2}{1997}=\frac{x+3}{1996}+\frac{x+4}{1995}\)

=>\(\frac{x+1}{1998}+1\frac{x+2}{1997}+1=\frac{x+3}{1996}+1+\frac{x+4}{1995}+1\)

\(\Leftrightarrow\)\(\frac{x+1999}{1998}+\frac{x+1999}{1997}=\frac{x+1999}{1996}+\frac{x+1999}{1995}\)

\(\Leftrightarrow\)\(\frac{x+1999}{1998}+\frac{x+1999}{1997}-\frac{x+1999}{1996}-\frac{x+1999}{1995}\)=0

\(\Leftrightarrow\)\(\left(x+1999\right)\left(\frac{1}{1998}+\frac{1}{1997}-\frac{1}{1996}-\frac{1}{1995}\right)\)=0

\(\Leftrightarrow\)x+1999=0(Vì \(\frac{1}{1998}+\frac{1}{1997}-\frac{1}{1996}-\frac{1}{1995}\ne0\))

\(\Leftrightarrow\)x=-1999

Vậy x=-1999

5 tháng 9 2018

Chậc :))) T còn cách khác đây =)))

\(\sqrt{x-1+2\sqrt{x-2}}-\sqrt{x-1-2\sqrt{x-2}}=1\)

\(\Leftrightarrow\left(\sqrt{x-1+2\sqrt{x-1}}\right)^2=\left(1+\sqrt{x-1-2\sqrt{x-2}}\right)^2\)

\(\Leftrightarrow x-1+2\sqrt{x-2}-x=2\sqrt{x-1-2\sqrt{x-2}}+x-2\sqrt{x-2}-x\)

\(\Leftrightarrow2\sqrt{x-2}-1=2\sqrt{x-1-2\sqrt{x-2}}-2\sqrt{x-2}\)

\(\Leftrightarrow4x-4\sqrt{x-2}-7=-8\sqrt{x-2}-8\sqrt{x-2}.\sqrt{x-2\sqrt{x-2}-1}+8x-12\)

\(\Leftrightarrow5-4\sqrt{x-2}-4x=-8\sqrt{x-2}-8\sqrt{x-2}.\sqrt{x-2\sqrt{x-2}-1}\)

\(\Leftrightarrow x=\frac{9}{4}\) (tmyk)

AH
Akai Haruma
Giáo viên
4 tháng 3 2019

Câu 1:

Tìm max:

Áp dụng BĐT Bunhiacopxky ta có:

\(y^2=(3\sqrt{x-1}+4\sqrt{5-x})^2\leq (3^2+4^2)(x-1+5-x)\)

\(\Rightarrow y^2\leq 100\Rightarrow y\leq 10\)

Vậy \(y_{\max}=10\)

Dấu đẳng thức xảy ra khi \(\frac{\sqrt{x-1}}{3}=\frac{\sqrt{5-x}}{4}\Leftrightarrow x=\frac{61}{25}\)

Tìm min:

Ta có bổ đề sau: Với $a,b\geq 0$ thì \(\sqrt{a}+\sqrt{b}\geq \sqrt{a+b}\)

Chứng minh:

\(\sqrt{a}+\sqrt{b}\geq \sqrt{a+b}\)

\(\Leftrightarrow (\sqrt{a}+\sqrt{b})^2\geq a+b\)

\(\Leftrightarrow \sqrt{ab}\geq 0\) (luôn đúng).

Dấu "=" xảy ra khi $ab=0$

--------------------

Áp dụng bổ đề trên vào bài toán ta có:

\(\sqrt{x-1}+\sqrt{5-x}\geq \sqrt{(x-1)+(5-x)}=2\)

\(\sqrt{5-x}\geq 0\)

\(\Rightarrow y=3(\sqrt{x-1}+\sqrt{5-x})+\sqrt{5-x}\geq 3.2+0=6\)

Vậy $y_{\min}=6$

Dấu "=" xảy ra khi \(\left\{\begin{matrix} (x-1)(5-x)=0\\ 5-x=0\end{matrix}\right.\Leftrightarrow x=5\)

AH
Akai Haruma
Giáo viên
4 tháng 3 2019

Bài 2:

\(A=\sqrt{(x-1994)^2}+\sqrt{(x+1995)^2}=|x-1994|+|x+1995|\)

Áp dụng BĐT dạng \(|a|+|b|\geq |a+b|\) ta có:

\(A=|x-1994|+|x+1995|=|1994-x|+|x+1995|\geq |1994-x+x+1995|=3989\)

Vậy \(A_{\min}=3989\)

Đẳng thức xảy ra khi \((1994-x)(x+1995)\geq 0\Leftrightarrow -1995\leq x\leq 1994\)

17 tháng 10 2016

\(\left(\frac{\sqrt{\left(-4\right).\left(-9\right)}}{\sqrt{2}}-\sqrt{2}.x\right):5,6=-7,2\)

\(\left(\frac{\sqrt{36}}{\sqrt{2}}-\sqrt{2}.x\right):\frac{28}{5}=\frac{-36}{5}\)

\(\frac{6}{\sqrt{2}}-\sqrt{2}.x=\frac{-36}{5}.\frac{28}{5}\)

\(\frac{6}{\sqrt{2}}-\sqrt{2}.x=\frac{-1008}{25}\)

\(\sqrt{2}.x=\frac{6}{\sqrt{2}}-\frac{-1008}{25}\)

\(\sqrt{2}.x=\frac{6}{\sqrt{2}}+\frac{1008}{25}\)

\(\sqrt{2}.x=\frac{150+\sqrt{2}.1008}{\sqrt{2}.25}\)

\(x=\frac{150+\sqrt{2}.1008}{\sqrt{2}.25}.\frac{1}{\sqrt{2}}\)

\(x=\frac{150+\sqrt{2}.1008}{25.2}=\frac{75+\sqrt{2}.504}{25}\)

Vậy \(x=\frac{75+\sqrt{2}.504}{25}\)

17 tháng 10 2016

Khiếp bn quá ,toán lớp 8 cg giải dc

4 tháng 10 2017

\(\left(\sqrt{x+4}-2\right)\left(\sqrt{4-x}+2\right)=-2x\)

Đặt \(\hept{\begin{cases}\sqrt{4+x}=a\ge0\\\sqrt{4-x}=b\ge0\end{cases}}\) thì ta có:

\(\hept{\begin{cases}\left(a-2\right)\left(b+2\right)=b^2-a^2\left(1\right)\\8=a^2+b^2\left(2\right)\end{cases}}\)

Lấy (2) + 2.(1)  vế theo vế rút gọn ta được

\(\Leftrightarrow3b^2-a^2+4b-4a-2ab=0\)

\(\Leftrightarrow\left(b-a\right)\left(3b+a+4\right)=0\)

\(\Leftrightarrow a=b\)

\(\Rightarrow\sqrt{4+x}=\sqrt{4-x}\)

\(\Leftrightarrow x=0\)

4 tháng 10 2017

Ta có : \(\left(\sqrt{x+4}-2\right)\left(\sqrt{x+4}+2\right)=-2x\)

\(\Rightarrow\left(\sqrt{x+4}\right)^2-2^2=-2x\)

\(\Leftrightarrow x+4-4=-2x\)

=> x = -2x

=> x + 2x = 0

=> 3x = 0

=> x = 0

Vậy x = 0. 

30 tháng 7 2018

kuchiyose edo tensei

nhờ vào năng lực rinegan , ta có thể  đoán dc

  \(\left(\sqrt{1+x}+\sqrt{8-x}\right)^2=1+x+8-x-2\sqrt{\left(X+1\right)\left(8-x\right)}\)

vậy pt sẽ như sau

\(a,\left(\sqrt{1+x}+\sqrt{8-x}\right)^2-\sqrt{\left(1+x\right)\left(8-x\right)}=3\) " thêm bớt nếu m thông minh sẽ hiểu "

\(9+2\sqrt{\left(1+x\right)\left(8-x\right)}-\sqrt{\left(1+x\right)\left(8-x\right)}=3\)

\(\sqrt{\left(1+x\right)\left(8-x\right)}=-6\)

\(\left(1+x\right)\left(8-x\right)=36\)

đến đây m có thể tự làm

c)  \(\sqrt{x+5}=5-x^2\)

      \(x+5=\left(5-x\right)^2\)

     \(x+5=x^4-10x^2+25\)  " rồi xong pt bậc 4 :)

 \(x^4-10x^2-x+20=0\)

\(x^4=10x^2+x-20\)

\(x^4+2mx^2+m^2=10x^2+x-20+2mx^2+m^2\)

\(\left(x^2+m\right)^2=2x^2\left(5+m\right)+x+\left(m^2-20\right)\)

\(\Delta=1-8\left(5+m\right)\left(m^2-20\right)\)

\(\Delta=1-8\left(5m^2-100+m^3-20m\right)\)

\(\Delta=1-40m^2+800-8m^3+160m\)

\(\Delta=-\left(2m+9\right)\left(4m^2+2m-89\right)\)

lấy m= -9/2 , cho nhanh thay vào ta đươc

\(\left(x^2-\frac{9}{2}\right)^2=2x^2\left(5-\frac{9}{2}\right)+x+\left(\frac{9}{2}^2-20\right)\)

\(\left(x^2-\frac{9}{2}\right)^2=x^2+x+\frac{1}{4}\)

\(\left(x^2-\frac{9}{2}\right)^2=\left(x+\frac{1}{2}\right)^2\)

\(\hept{\begin{cases}x^2-\frac{9}{2}=x+\frac{1}{2}\\x^2-\frac{9}{2}=-x-\frac{1}{2}\end{cases}}\)

đến đây cậu có thể làm tiếp :)

câu B hơi gắt cần time suy nghĩ :)