\(y=2Sin^2x+3SinxCosx+Cos^2x\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 8 2021

\(y=2sin^2x+3sinx.cosx+cos^2x\)

\(=-\left(1-2sin^2x\right)+\dfrac{3}{2}sin2x+\dfrac{1}{2}\left(2cos^2x-1\right)+\dfrac{1}{2}\)

\(=-cos2x+\dfrac{3}{2}sin2x+\dfrac{1}{2}cos2x+\dfrac{1}{2}\)

\(=\dfrac{3}{2}sin2x-\dfrac{1}{2}cos2x+\dfrac{1}{2}\)

\(=\dfrac{\sqrt{10}}{2}\left(\dfrac{3}{\sqrt{10}}sin2x-\dfrac{1}{\sqrt{10}}cos2x\right)+\dfrac{1}{2}\)

\(=\dfrac{\sqrt{10}}{2}sin\left(2x-arccos\dfrac{3}{\sqrt{10}}\right)+\dfrac{1}{2}\)

Vì \(sin\left(2x-arccos\dfrac{3}{\sqrt{10}}\right)\in\left[-1;1\right]\)

\(\Rightarrow y=\dfrac{\sqrt{10}}{2}sin\left(2x-arccos\dfrac{3}{\sqrt{10}}\right)+\dfrac{1}{2}\in\left[-\dfrac{\sqrt{10}}{2}+\dfrac{1}{2};\dfrac{\sqrt{10}}{2}+\dfrac{1}{2}\right]\)

\(\Rightarrow y_{min}=-\dfrac{\sqrt{10}}{2}+\dfrac{1}{2}\Leftrightarrow sin\left(2x-arccos\dfrac{3}{\sqrt{10}}\right)=-1\Leftrightarrow...\)

\(y_{max}=\dfrac{\sqrt{10}}{2}+\dfrac{1}{2}\Leftrightarrow sin\left(2x-arccos\dfrac{3}{\sqrt{10}}\right)=1\Leftrightarrow...\)

NV
10 tháng 9 2020

a/ \(0\le cos^2x\le1\Rightarrow2\le y\le\sqrt{7}\)

\(y_{min}=2\) khi \(cos^2x=1\)

\(y_{max}=\sqrt{7}\) khi \(cos^2x=0\)

b/ \(y=\frac{2}{1+tan^2x}=\frac{2}{\frac{1}{cos^2x}}=2cos^2x\le2\)

\(\Rightarrow y_{max}=2\) khi \(cos^2x=1\)

\(y_{min}\) ko tồn tại

c/ \(y=1-cos2x+\sqrt{3}sin2x=2\left(\frac{\sqrt{3}}{2}sin2x-\frac{1}{2}cos2x\right)+1\)

\(y=2sin\left(2x-\frac{\pi}{6}\right)+1\)

Do \(-1\le sin\left(2x-\frac{\pi}{6}\right)\le1\Rightarrow-1\le y\le3\)

NV
18 tháng 9 2020

\(y=\frac{2cos^2x+2sinx.cosx}{2+2sin^2x}=\frac{1+cos2x+sin2x}{3-cos2x}\)

\(\Rightarrow3y-y.cos2x=1+cos2x+sin2x\)

\(\Rightarrow sin2x+\left(y+1\right)cos2x=3y-1\)

Theo điều kiện có nghiệm của pt lượng giác bậc nhất:

\(1^2+\left(y+1\right)^2\ge\left(3y-1\right)^2\)

\(\Leftrightarrow8y^2-8y-1\le0\)

\(\Rightarrow\frac{2-\sqrt{6}}{4}\le y\le\frac{2+\sqrt{6}}{4}\)

30 tháng 7 2019
https://i.imgur.com/ETf0boV.jpg
NV
8 tháng 9 2020

\(0\le cos^2x\le1\Rightarrow2\le3-cos^2x\le3\)

\(\Rightarrow\frac{8}{3}\le y\le4\)

\(y_{min}=\frac{8}{3}\) khi \(cosx=0\)

\(y_{max}=4\) khi \(cos^2x=1\)

b/ \(0\le sin^23x\le1\Rightarrow1\le\sqrt{2-sin^23x}\le\sqrt{2}\)

\(\Rightarrow\frac{1}{\sqrt{2}}\le y\le1\)

\(y_{min}=\frac{1}{\sqrt{2}}\) khi \(sin3x=0\)

\(y_{max}=1\) khi \(sin^23x=1\)

c/ \(y=\sqrt{3}\left(sin^2x-cos^2x\right)\left(sin^2x+cos^2x\right)+sin2x+1\)

\(=-\sqrt{3}\left(cos^2x-sin^2x\right)+sin2x+1\)

\(=-\sqrt{3}cos2x+sin2x+1\)

\(=2\left(\frac{1}{2}sin2x-\frac{\sqrt{3}}{2}cos2x\right)+1=2sin\left(2x-\frac{\pi}{3}\right)+1\)

Do \(-1\le sin\left(2x-\frac{\pi}{3}\right)\le1\Rightarrow-1\le y\le3\)

\(y_{min}=-1\) khi \(sin\left(2x-\frac{\pi}{3}\right)=-1\)

\(y_{max}=3\) khi \(sin\left(2x-\frac{\pi}{3}\right)=1\)

NV
20 tháng 8 2020

\(y=\frac{\sqrt{3}}{2}sin2x+\frac{1}{2}cos2x+\frac{1}{2}=sin\left(2x+\frac{\pi}{6}\right)+\frac{1}{2}\)

Do \(-1\le sin\left(2x+\frac{\pi}{6}\right)\le1\Rightarrow-\frac{1}{2}\le y\le\frac{3}{2}\)

\(y_{min}=-\frac{1}{2}\) khi \(sin\left(2x+\frac{\pi}{6}\right)=-1\)

\(y_{max}=\frac{3}{2}\) khi \(sin\left(2x+\frac{\pi}{6}\right)=1\)

NV
25 tháng 7 2020

e/

\(\Leftrightarrow3\left(1-cos6x\right)-\left(2cos^26x-1\right)=4\)

\(\Leftrightarrow-2cos^26x-3cos6x=0\)

\(\Leftrightarrow cos6x\left(2cos6x+3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}cos6x=0\\cos6x=-\frac{3}{2}\left(l\right)\end{matrix}\right.\)

\(\Rightarrow6x=\frac{\pi}{2}+k2\pi\)

\(\Rightarrow x=\frac{\pi}{12}+\frac{k\pi}{3}\)

NV
25 tháng 7 2020

d/

\(\Leftrightarrow3\left(1-cos2x\right)-2\left(1-cos^22x\right)=5\)

\(\Leftrightarrow2cos^22x-3cos2x-4=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=\frac{3+\sqrt{41}}{4}\left(l\right)\\cos2x=\frac{3-\sqrt{41}}{4}\end{matrix}\right.\)

\(\Rightarrow x=\pm\frac{1}{2}arccos\left(\frac{3-\sqrt{41}}{4}\right)+k\pi\)

Nghiệm xấu quá :(

21 tháng 9 2023

b) \(2sin^2x-3sinxcosx+cos^2x=0\)

\(\Leftrightarrow2tan^2x-3tanx+1=0\left(cosx\ne0\Leftrightarrow x\ne\dfrac{\pi}{2}+k\pi\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}tanx=1\\tanx=\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}tanx=tan\dfrac{\pi}{4}\\tanx=\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+k\pi\\x=arctan\left(\dfrac{1}{2}\right)+k\pi\end{matrix}\right.\left(k\in Z\right)\)