Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức bu nhi a ta có
\(\left(a^3+b^3+c^3+d^3\right)^2\le\left(a^4+b^4+c^4+d^4\right)\left(a^2+b^2+c^2+d^2\right)\)
=> \(\frac{a^4+b^4+c^4+d^4}{a^3+b^3+c^3+d^3}\ge\frac{a^3+b^3+c^3+d^3}{a^2+b^2+c^2+d^2}\)
tương tự ta có
\(\frac{a^3+b^3+c^3+d^3}{a^2+b^2+c^2+d^2}\ge\frac{a^2+b^2+c^2+d^2}{a+b+c+d}\)
mà \(\left(a+b+c+d\right)^2\le\left(a^2+b^2+c^2+d^2\right)\left(1+1+1+1\right)\Rightarrow a^2+b^2+c^2+d^2\ge1\)
từ đó ta có
\(\frac{a^4+b^4+c^4+d^4}{a^3+b^3+c^3+d^3}\ge\frac{1}{2}\)
dấu = xảy ra <=> \(a=b=c=d=\frac{1}{2}\)
Em không chắc lắm đâu nhé!
Biến đổi \(A=\frac{\left(\frac{a^4}{b^2}\right)}{b\left(c+2a\right)}+\frac{\left(\frac{b^4}{c^2}\right)}{c\left(a+2b\right)}+\frac{\left(\frac{c^4}{a^2}\right)}{a\left(b+2c\right)}\)
\(=\frac{\left(\frac{a^2}{b}\right)^2}{b\left(c+2a\right)}+\frac{\left(\frac{b^2}{c}\right)^2}{c\left(a+2b\right)}+\frac{\left(\frac{c^2}{a}\right)^2}{a\left(b+2c\right)}\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel:\(A\ge\frac{\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)^2}{3\left(ab+bc+ca\right)}\)
Áp dụng BĐT Cauchy-Schwarz cho cái biểu thức trong ngoặc ở trên tử,ta lại được:
\(A\ge\frac{\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)^2}{3\left(ab+bc+ca\right)}\ge\frac{\left(\frac{\left(a+b+c\right)^2}{a+b+c}\right)^2}{3\left(ab+bc+ca\right)}\ge\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=1\) (áp dụng BĐT quen thuộc \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\) cho cái biểu thức dưới mẫu)
Dấu "=" xảy ra khi a = b =c
Vậy \(A_{min}=1\Leftrightarrow a=b=c\)
\(\dfrac{4}{3}\le a+\sqrt{ab}+\sqrt[3]{abc}=a+\sqrt[]{\dfrac{a}{2}.2b}+\sqrt[3]{\dfrac{a}{4}.b.4c}\)
\(\le a+\dfrac{1}{2}\left(\dfrac{a}{2}+2b\right)+\dfrac{1}{3}\left(\dfrac{a}{4}+b+4c\right)=\dfrac{4}{3}\left(a+b+c\right)\)
\(\Rightarrow Q\ge1\)
\(Q_{min}=1\) khi \(\left(a;b;c\right)=\left(\dfrac{16}{21};\dfrac{4}{21};\dfrac{1}{21}\right)\)
a+4/a>=2*căn a*4/a=4
b+9/b>=2*căn b*9/b=6
c+16/c>=2*căn c*16/c=8
=>3a/4+b/2+c/4+3/a+9/2b+4/c>=3+3+2=8
a+2b+3c>=20
=>a/4+b/2+3c/4>=5
=>S>=13
Dấu = xảy ra khi a=2; b=3; c=4
Có \(a^4+b^4+c^4=\left(a^2\right)^2+\left(b^2\right)^2+\left(c^2\right)^2\)
\(\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{3}\)
\(\ge\dfrac{\left(\dfrac{\left(a+b+c\right)^2}{3}\right)^2}{3}\) (áp dụng 2 lần BĐT \(x^2+y^2+z^2\ge\dfrac{\left(x+y+z\right)^2}{3}\))
\(=\dfrac{\left(\dfrac{4^2}{3}\right)^2}{3}=\dfrac{256}{27}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\dfrac{4}{3}\)
Vậy \(minP=\dfrac{256}{27}\) khi \(a=b=c=\dfrac{4}{3}\)
Min P dễ em có thể tự tìm đơn giản bằng AM-GM
\(P=\left(a^2+b^2+c^2\right)^2-2\left(a^2b^2+b^2c^2+c^2a^2\right)\)
\(=\left(a^2+b^2+c^2\right)^2-2\left(ab+bc+ca\right)^2+4abc\left(a+b+c\right)\)
\(=\left(a^2+b^2+c^2\right)^2-2\left(ab+bc+ca\right)^2+16abc\)
Do \(0\le a;b;c\le3\Rightarrow\left(3-a\right)\left(3-b\right)\left(3-c\right)\ge0\)
\(\Rightarrow3\left(ab+bc+ca\right)-9\left(a+b+c\right)+27-abc\ge0\)
\(\Rightarrow ab+bc+ca\ge\dfrac{abc+9}{3}\)
\(a^2+b^2+c^2=\left(a+b+c\right)^2-2\left(ab+bc+ca\right)=16-2\left(ab+bc+ca\right)\)
\(\le16-\dfrac{2}{3}\left(abc+9\right)\)
Do đó:
\(P\le\left[16-\dfrac{2}{3}\left(abc+9\right)\right]^2-2\left(\dfrac{abc+9}{3}\right)^2+16abc\)
Đặt \(abc=x\Rightarrow0\le x\le\dfrac{64}{27}\)
\(P\le\left[16-\dfrac{2}{3}\left(x+9\right)\right]^2-2\left(\dfrac{x+9}{3}\right)^2+16x\)
\(P\le\dfrac{2}{9}\left(x^2-6x+369\right)\)
\(P\le\dfrac{2}{9}x\left(x-6\right)+82\)
Do \(0\le x\le\dfrac{64}{27}\Rightarrow x-6< 0\Rightarrow\dfrac{2}{9}x\left(x-6\right)\le0\)
\(\Rightarrow P\le82\)
Dấu "=" xảy ra khi \(x=0\) hay \(\left(a;b;c\right)=\left(0;1;3\right)\) và các hoán vị