Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
\(3x^2-6x+1\)
\(=3\left(x^2-2x+\frac{1}{3}\right)\)
\(=3\left(x-1\right)^2-\frac{2}{3}\)
vì \(3\left(x-2\right)^2\ge0\)nên \(3\left(x-1\right)^2-\frac{2}{3}\ge\frac{2}{3}\)
vậy GTNN của biểu thức =2/3
minh tống ơi chắc là sai đấy
A lớn nhất khi \(3x^2+1\) nhỏ nhất.
Mà \(3x^2\ge0\)=> \(3x^2+1\ge1\)
Dấu = xảy ra khi : \(x=0\)
Khi đó \(A=\frac{6x-2}{3x^2+1}=\frac{-2}{1}=-2\)
\(A=\frac{6x+1-3+3x^2-3x^2}{3x^2+1}=\frac{\left(3x^2+1\right)-3\left(1-2x+x^2\right)}{\left(3x^2+1\right)}=1-\frac{3\left(1-x\right)^2}{\left(3x^2+1\right)}\)
mà \(-3\left(1-x\right)^2\le0\)
\(\left(3x^2+1\right)>0\)
suy ra \(\frac{3\left(1-x\right)^2}{\left(3x^2+1\right)}\le0\Leftrightarrow1-\frac{3\left(1-x\right)^2}{\left(3x^2+1\right)}\le1\)
max của A là 1 dấu = xảy ra khi (1-x)=0 , x=1
Để A đạt GTLN
=>x2 -2x đạt giá trị dương nhỏ nhất
=>x2-2x=1
=>x2-2x-1=0
=>x=$1-\sqrt{2};\sqrt{2}+1$1−√2;√2+1
Vậy A ko xảy ra GTLN
Để A đạt GTLN
=>x2 -2x đạt giá trị dương nhỏ nhất
=>x2-2x=1
=>x2-2x-1=0
=>x=\(1-\sqrt{2};\sqrt{2}+1\)
Vậy A ko xảy ra GTLN