K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2021

c: \(\Leftrightarrow\left(x-5\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
12 tháng 8 2023

Tìm min:

$F=3x^2+x-2=3(x^2+\frac{x}{3})-2$

$=3[x^2+\frac{x}{3}+(\frac{1}{6})^2]-\frac{25}{12}$

$=3(x+\frac{1}{6})^2-\frac{25}{12}\geq \frac{-25}{12}$

Vậy $F_{\min}=\frac{-25}{12}$. Giá trị này đạt tại $x+\frac{1}{6}=0$
$\Leftrightarrow x=\frac{-1}{6}$

AH
Akai Haruma
Giáo viên
12 tháng 8 2023

Tìm min

$G=4x^2+2x-1=(2x)^2+2.2x.\frac{1}{2}+(\frac{1}{2})^2-\frac{5}{4}$

$=(2x+\frac{1}{2})^2-\frac{5}{4}\geq 0-\frac{5}{4}=\frac{-5}{4}$ (do $(2x+\frac{1}{2})^2\geq 0$ với mọi $x$)

Vậy $G_{\min}=\frac{-5}{4}$. Giá trị này đạt tại $2x+\frac{1}{2}=0$

$\Leftrightarrow x=\frac{-1}{4}$

9 tháng 12 2021

\(a,\Leftrightarrow9x^2=-36\Leftrightarrow x\in\varnothing\\ b,\Leftrightarrow3\left(x+4\right)-x\left(x+4\right)=0\\ \Leftrightarrow\left(3-x\right)\left(x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=3\\x=-4\end{matrix}\right.\\ c,\Leftrightarrow2x^2-x-2x^2+3x+2=0\\ \Leftrightarrow2x=-2\Leftrightarrow x=-1\\ d,\Leftrightarrow\left(2x-3-2x\right)\left(2x-3+2x\right)=0\\ \Leftrightarrow-3\left(4x-3\right)=0\\ \Leftrightarrow x=\dfrac{3}{4}\\ e,\Leftrightarrow\dfrac{1}{3}x\left(x-9\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=9\end{matrix}\right.\\ f,\Leftrightarrow x^2\left(x-1\right)-\left(x-1\right)=0\\ \Leftrightarrow\left(x^2-1\right)\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)^2\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

10 tháng 10 2021

\(4x^2-1=\left(2x-1\right)\left(2x+1\right)\)

\(x\left(x+y\right)-6x-6y=\left(x+y\right)\left(x-6\right)\)

\(x^2-2xy+y^2-z^2=\left(x-y-z\right)\left(x-y+z\right)\)

\(9x^2-\dfrac{1}{4}=\left(3x-\dfrac{1}{2}\right)\left(3x+\dfrac{1}{2}\right)\)

`#3107.101107`

a)

`x^2 + 6x + 10`

`= (x^2 + 2*x*3 + 3^2) + 1`

`= (x + 3)^2 + 1`

Vì `(x + 3)^2 \ge 0` `AA` `x`

`=> (x + 3)^2 + 1 \ge 1` `AA` `x`

Vậy, GTNN của bt là 1 khi `(x + 3)^2 = 0`

`<=> x + 3 = 0`

`<=> x = -3`

b)

`4x^2 - 4x + 5`

`= [(2x)^2 - 2*2x*1 + 1^2] + 4`

`= (2x - 1)^2 + 4`

Vì `(2x - 1)^2 \ge 0` `AA` `x`

`=> (2x - 1)^2 + 4 \ge 4` `AA` `x`

Vậy, GTNN của bt là `4` khi `(2x - 1)^2 = 0`

`<=> 2x - 1 = 0`

`<=> 2x = 1`

`<=> x = 1/2`

c)

`x^2 - 3x + 1`

`= (x^2 - 2*x*3/2 + 9/4) - 5/4`

`= (x - 3/2)^2 - 5/4`

Vì `(x - 3/2)^2 \ge 0` `AA` `x`

`=> (x - 3/2)^2 - 5/4 \ge -5/4` `AA` `x`

Vậy, GTNN của bt là `-5/4` khi `(x - 3/2)^2 = 0`

`<=> x - 3/2 = 0`

`<=> x = 3/2`

NV
15 tháng 12 2020

a.

\(1-4x^2=\left(1-2x\right)\left(1+2x\right)\)

b.

\(8-27x^3=\left(2\right)^3-\left(3x\right)^3=\left(2-3x\right)\left(4+6x+9x^2\right)\)

c.

\(27+27x+9x^2+x^3=x^3+3.x^2.3+3.3^2.x+3^3\)

\(=\left(x+3\right)^3\)

d.

\(2x^3+4x^2+2x=2x\left(x^2+2x+1\right)=2x\left(x+1\right)^2\)

e.

\(x^2-y^2-5x+5y=\left(x-y\right)\left(x+y\right)-5\left(x-y\right)\)

\(=\left(x-y\right)\left(x+y-5\right)\)

f.

\(x^2-6x+9-y^2=\left(x-3\right)^2-y^2=\left(x-3-y\right)\left(x-3+y\right)\)

1 tháng 7 2021

g. 10x(x-y)-6y(y-x)

=10x(x-y)+6y(x-y)

=(x-y)(10x+6y)

h.x2-4x-5

=(x-5)(x+1)

i.x4-y= (x2-y2)(x2+y2)

 

 

4 tháng 6 2017

1/

\(A=3x^2+6x-11\)\(=3\left(x^2+2x-\frac{11}{3}\right)\)\(=3\left[\left(x^2+2x+1\right)-\frac{14}{3}\right]\)\(=3\left(x+1\right)^2-14\ge-14\)

VẬY \(minA=-14\)khi   \(x=-1\)

2/

\(B=\frac{3x^2+2x+7}{3x^2+2x+1}=1+\frac{6}{3x^2+2x+1}\)

Biểu thức   \(\frac{6}{3x^2+2x+1}\)đạt GTLN khi   \(3x^2+2x+1\)nhỏ nhất 

Mà   \(3x^2+2x+1\ge1\)nên GTNN của   \(3x^2+2x+1\)là  \(1\)

Ta có :  \(maxB=1+6=7\) khi   \(x=0\)

TK mk nka !!!!! 

4 tháng 6 2017
  1. \(3x^2+6x-11=3\left(x^2+2x+1\right)-14=3\left(x+1\right)^2-14\ge-14\)​ \(\Rightarrow Min=-14\Leftrightarrow x=-1\)
  2. \(B=\frac{3x^2+2x+7}{3x^2+2x+1}=1+\frac{6}{3x^2+2x+1}\)phân số đạt lớn nhất khi \(3x^2+2x+1\)giá trị nhỏ nhất nên \(3x^2+2x+1=3x^2+\frac{2.\sqrt{3}}{\sqrt{3}}x+\frac{1}{3}+\frac{4}{3}=\left(x\sqrt{3}+\frac{1}{\sqrt{3}}\right)^2+\frac{4}{3}\ge\frac{4}{3}\)

         \(\Rightarrow B_{max}=1+\frac{6}{\frac{4}{3}}=\frac{11}{2}\Leftrightarrow x=-\frac{1}{3}\)

NV
26 tháng 7 2021

1.

Đặt \(x-2=t\ne0\Rightarrow x=t+2\)

\(B=\dfrac{4\left(t+2\right)^2-6\left(t+2\right)+1}{t^2}=\dfrac{4t^2+10t+5}{t^2}=\dfrac{5}{t^2}+\dfrac{2}{t}+4=5\left(\dfrac{1}{t}+\dfrac{1}{5}\right)^2+\dfrac{19}{5}\ge\dfrac{19}{5}\)

\(B_{min}=\dfrac{19}{5}\) khi \(t=-5\) hay \(x=-3\)

2.

Đặt \(x-1=t\ne0\Rightarrow x=t+1\)

\(C=\dfrac{\left(t+1\right)^2+4\left(t+1\right)-14}{t^2}=\dfrac{t^2+6t-9}{t^2}=-\dfrac{9}{t^2}+\dfrac{6}{t}+1=-\left(\dfrac{3}{t}-1\right)^2+2\le2\)

\(C_{max}=2\) khi \(t=3\) hay \(x=4\)