\(\dfrac{\sqrt{x}-1}{\sqrt{x}+4}\) với \(x\ge4\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
12 tháng 12 2023

Lời giải:

$A=\frac{\sqrt{x}-1}{\sqrt{x}+4}=1-\frac{5}{\sqrt{x}+4}$

Vì $x\geq 4\Rightarrow \sqrt{x}\geq 2\Rightarrow \sqrt{x}+4\geq 6$

$\Rightarrow \frac{5}{\sqrt{x}+4}\leq \frac{5}{6}$

$\Rightarrow A=1-\frac{5}{\sqrt{x}+4}\geq 1-\frac{5}{6}=\frac{1}{6}$

Vậy $A_{\min}=\frac{1}{6}$. Giá trị này đạt tại $x=4$.

1: \(=3\left(x+\dfrac{2}{3}\sqrt{x}+\dfrac{1}{3}\right)\)

\(=3\left(x+2\cdot\sqrt{x}\cdot\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{2}{9}\right)\)

\(=3\left(\sqrt{x}+\dfrac{1}{3}\right)^2+\dfrac{2}{3}>=3\cdot\dfrac{1}{9}+\dfrac{2}{3}=1\)

Dấu '=' xảy ra khi x=0

2: \(=x+3\sqrt{x}+\dfrac{9}{4}-\dfrac{21}{4}=\left(\sqrt{x}+\dfrac{3}{2}\right)^2-\dfrac{21}{4}>=-3\)

Dấu '=' xảy ra khi x=0

3: \(A=-2x-3\sqrt{x}+2< =2\)

Dấu '=' xảy ra khi x=0

5: \(=x-2\sqrt{x}+1+1=\left(\sqrt{x}-1\right)^2+1>=1\)

Dấu '=' xảy ra khi x=1

11 tháng 7 2018

\(a.A=\dfrac{\sqrt{x-2\sqrt{2x-4}}}{\sqrt{2}}=\dfrac{\sqrt{x-2-2.\sqrt{2}.\sqrt{x-2}+2}}{\sqrt{2}}=\dfrac{\sqrt{x-2}-\sqrt{2}}{\sqrt{2}}\) \(b.A=\dfrac{\sqrt{x-2\sqrt{2x-4}}}{\sqrt{2}}=\dfrac{\sqrt{x-2-2.\sqrt{2}.\sqrt{x-2}+2}}{\sqrt{2}}=\dfrac{\sqrt{2}-\sqrt{x-2}}{\sqrt{2}}\)

a: \(P=\sqrt{x}\left(\dfrac{\sqrt{x}}{x^2-1}+\dfrac{x+2\sqrt{x}+1-x+2\sqrt{x}-1}{x-1}\right)-\dfrac{5x}{x^2-1}\)

\(=\sqrt{x}\left(\dfrac{\sqrt{x}}{x^2-1}+\dfrac{4\sqrt{x}}{x-1}\right)-\dfrac{5x}{x^2-1}\)

\(=\sqrt{x}\left(\dfrac{\sqrt{x}+4\sqrt{x}\left(x+1\right)}{\left(x^2-1\right)}\right)-\dfrac{5x}{x^2-1}\)

\(=\dfrac{x+4x\left(x+1\right)}{x^2-1}-\dfrac{5x}{x^2-1}\)

\(=\dfrac{x+4x^2+4x-5x}{x^2-1}\)

\(=\dfrac{4x^2}{x^2-1}\)

Khi x=4 thì \(P=\dfrac{4\cdot16}{16-1}=\dfrac{64}{15}\)

b: Để P/Q=0 thì P=0

=>x=0

\(\sqrt{xy}+\sqrt{x}+\sqrt{y}\ge3\)

ÁP DỤNG BĐT COSI
\(\sqrt{xy}+\sqrt{x}+\sqrt{y}\le\frac{x+y}{2}+\frac{x+1}{2}+\frac{y+1}{2}=x+y+1\ge3=>x+y\ge2\)

\(P\ge\frac{\left(x+y\right)^2}{x+y}=2\left(cosi\right)\) vậy min P=2 <=> x=y=1

12 tháng 5 2021

                      Bài làm :

Ta có :

\(\left(\sqrt{x}+1\right)\left(\sqrt{y}+1\right)\ge4\)

\(\Leftrightarrow\sqrt{xy}+\sqrt{y}+\sqrt{x}+1\ge4\)

\(\Leftrightarrow\sqrt{xy}+\sqrt{x}+\sqrt{y}\ge3\)

Áp dụng BĐT cosi cho các số không âm ; ta được :

\(3\le\sqrt{xy}+\sqrt{x}+\sqrt{y}\le\frac{x+y}{2}+\frac{x+1}{2}+\frac{y+1}{2}=x+y+1\)

\(\Rightarrow x+y\ge2\)

Ta có :

\(P=\frac{x^2}{y}+\frac{y^2}{x}\ge\frac{\left(x+y\right)^2}{x+y}=x+y\)

\(\Rightarrow P\ge2\)

Dấu "=" xảy ra khi x=y=1

Vậy MinP = 2 <=> x=y=1

AH
Akai Haruma
Giáo viên
8 tháng 12 2017

Bài 3:

Áp dụng BĐT Bunhiacopxky ta có:

\((2x+3y)^2\leq (2x^2+3y^2)(2+3)\)

\(\Leftrightarrow A^2\leq 5(2x^2+3y^2)\leq 5.5\)

\(\Leftrightarrow A^2\leq 25\Leftrightarrow A^2-25\leq 0\)

\(\Leftrightarrow (A-5)(A+5)\leq 0\Leftrightarrow -5\leq A\leq 5\)

Vậy \(A_{\min}=-5\Leftrightarrow (x,y)=(-1;-1)\)

\(A_{\max}=5\Leftrightarrow x=y=1\)

AH
Akai Haruma
Giáo viên
8 tháng 12 2017

Bài 4:

Lời giải:

\(B=\sqrt{x-1}+\sqrt{5-x}\)

\(\Rightarrow B^2=(\sqrt{x-1}+\sqrt{5-x})^2=4+2\sqrt{(x-1)(5-x)}\)

Vì \(\sqrt{(x-1)(5-x)}\geq 0\Rightarrow B^2\geq 4\)

Mặt khác \(B\geq 0\)

Kết hợp cả hai điều trên suy ra \(B\geq 2\)

Vậy \(B_{\min}=2\).

Dấu bằng xảy ra khi \((x-1)(5-x)=0\Leftrightarrow x\in\left\{1;5\right\}\)

---------------------------------------

\(A=\sqrt{x^2+x+1}+\sqrt{x^2-x+1}\)

\(\Rightarrow A^2=2x^2+2+2\sqrt{(x^2+x+1)(x^2-x+1)}\)

\(\Leftrightarrow A^2=2x^2+2+2\sqrt{(x^2+1)^2-x^2}=2x^2+2+2\sqrt{x^4+1+x^2}\)

Vì \(x^2\geq 0\forall x\in\mathbb{R}\)

\(\Rightarrow A^2\geq 2+2\sqrt{1}\Leftrightarrow A^2\geq 4\)

Mà $A$ là một số không âm nên từ \(A^2\geq 4\Rightarrow A\geq 2\)

Vậy \(A_{\min}=2\Leftrightarrow x=0\)

19 tháng 5 2017

2, rút gọn B=x^2/(y-1)+y^2/(x-1) 

AM-GM : x^2/(y-1)+4(y-1) >/ 4x ; y^2/(x-1)+4(x-1) >/ 4y 

=> B >/ 4x-4(y-1)+4y-4(x-1)=4x-4y+4+4y-4x+4=8 

minB=8 

19 tháng 5 2017

Câu 1:

Áp dụng BĐT AM-GM ta có: \(x+1\ge2\sqrt{x}\)

\(\Rightarrow x+1+x+1\ge x+2\sqrt{x}+1\)

\(\Rightarrow2x+2\ge\left(\sqrt{x}+1\right)^2\left(1\right)\)

Tương tự cũng có: \(2y+2\ge\left(\sqrt{y}+1\right)^2\left(2\right)\)

Nhân theo vế của \(\left(1\right);\left(2\right)\) ta có:

\(\left(2x+2\right)\left(2y+2\right)\ge\left(\sqrt{x}+1\right)^2\left(\sqrt{y}+1\right)^2\ge16\)

\(\Rightarrow4\left(x+1\right)\left(y+1\right)\ge16\Rightarrow\left(x+1\right)\left(y+1\right)\ge4\)

Lại áp dụng BĐT AM-GM ta có:

\(\left(x+1\right)+\left(y+1\right)\ge2\sqrt{\left(x+1\right)\left(y+1\right)}\ge4\)

\(\Rightarrow x+y\ge2\). Giờ thì áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:

\(A=\frac{x^2}{y}+\frac{y^2}{x}\ge\frac{\left(x+y\right)^2}{x+y}=x+y\ge2\)

Đẳng thức xảy ra khi \(x=y=1\)