Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Đặt \(u=\sqrt{x}\). Khi đó :
+) \(u\ge0\)
+) \(A=\frac{1+u^2}{\left(1+u\right)^2}\)
Ta có : \(2\left(1+u^2\right)\ge\left(1+u\right)^2\Leftrightarrow2+2u^2\ge1+u^2+2u\Leftrightarrow1-2u+u^2\ge0\)
\(\Leftrightarrow\left(1-u\right)^2\ge0\)( luôn đúng )
\(\Rightarrow A\ge\frac{1}{2}\)
Khi u = 1 thì \(A=\frac{1}{2}\). Vậy min \(A=\frac{1}{2}\)
- Đặt v = 1+ u . Khi đó :
+) v > 1
+) \(A=\frac{1+\left(v-1\right)^2}{v^2}=\frac{v^2-2u+2}{v^2}=1-\frac{2}{v}+\frac{2}{v^2}\)
\(=2\left[\left(\frac{1}{v}\right)^2-\left(\frac{1}{v}\right)\right]+1=2\left[\left(\frac{1}{v}\right)-\frac{1}{2}\right]^2+\frac{1}{2}\)
- Vì \(v\ge1\)\(\frac{1}{v}\le1\Rightarrow-\frac{1}{2}\le\frac{1}{v}-\frac{1}{2}\le\frac{1}{2}\)
\(\Rightarrow a\le\left|\frac{1}{v}-\frac{1}{2}\right|\le\frac{1}{2}\Rightarrow\frac{1}{2}\le2\left|\frac{1}{v}-\frac{1}{2}\right|^2+\frac{1}{2}\le1\Rightarrow\frac{1}{2}\le A\le1\)
Ta thấy :
+) khi v = 2 ( tức là khi x = 1 ) thì \(A=\frac{1}{2}\)
+) khi v = 1 ( tức là khi x = 0 ) thì A = 1
Vậy maxA = 1 và min\(A=\frac{1}{2}\)
mk giải 1 bài lm mẩu nha .
+) ta có : \(A=x-12\sqrt{x}\Leftrightarrow x-12\sqrt{x}-A=0\)
vì phương trình này luôn có nghiệm \(\Leftrightarrow\Delta'\ge0\)
\(\Leftrightarrow6^2+A\ge0\Leftrightarrow A\ge-36\)
vậy giá trị nhỏ nhất của \(A\) là \(-36\) dấu "=" xảy ra khi \(\sqrt{x}=\dfrac{-b'}{a}=\dfrac{6}{1}=6\Leftrightarrow x=36\)
mấy câu còn lại bn chuyển quế đưa về phương trình bật 2 theo \(x\) rồi giải như trên là đc :
lộn ! là phương trình bật 2 đối với ẩn là \(\sqrt{x}\) nha :
DƯƠNG PHAN KHÁNH DƯƠNG
Ta có: \(x^2+4y=8\)
<=> \(y=\frac{8-x^2}{4}\)
\(P=x+y+\frac{9}{x+y}+\frac{1}{x+y}\)
\(=\left(x+y+\frac{9}{x+y}\right)+\frac{1}{x+\frac{8-x^2}{4}}\)
\(\ge2\sqrt{\left(x+y\right).\frac{9}{x+y}}+\frac{4}{-x^2+4x+8}\)
\(=2.3+\frac{4}{-\left(x^2-4x+4\right)+12}=6+\frac{4}{-\left(x-2\right)^2+12}\)
\(\ge6+\frac{4}{12}=\frac{19}{3}\)
Dấu "=" xảy ra <=> x = 2; y =1
\(P=\left(\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(1-\sqrt{xy}\right)+\left(\sqrt{x}+\sqrt{y}\right)\left(1+\sqrt{xy}\right)}{1-xy}\right):\left(\frac{x+y+2xy+1-xy}{1-xy}\right)\)
\(=\left(\frac{2\sqrt{x}+2y\sqrt{x}}{1-xy}\right):\left(\frac{\left(x+1\right)\left(y+1\right)}{1-xy}\right)\)
\(=\frac{2\sqrt{x}\left(y+1\right)}{\left(1-xy\right)}.\frac{\left(1-xy\right)}{\left(x+1\right)\left(y+1\right)}=\frac{2\sqrt{x}}{x+1}\)
\(x=\frac{2}{2+\sqrt{3}}=\frac{2\left(2-\sqrt{3}\right)}{4-3}=4-2\sqrt{3}=\left(\sqrt{3}-1\right)^2\Rightarrow\sqrt{x}=\sqrt{3}-1\)
\(\Rightarrow P=\frac{2\left(\sqrt{3}-1\right)}{5-2\sqrt{3}}=\frac{2+6\sqrt{3}}{13}\)
Ta có \(1-P=1-\frac{2\sqrt{x}}{x+1}=\frac{x-2\sqrt{x}+1}{x+1}=\frac{\left(\sqrt{x}-1\right)^2}{x+1}\ge0\) \(\forall x\ge0\)
\(\Rightarrow1-P\ge0\Rightarrow P\le1\)