Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(x+y\right)^3-3xy\left(x+y\right)+xy\)
Vì x + y = 1 nên A = 1 - 2xy
Áp dụng btt co-si ta có:
\(xy\le\left(x+y\right)^{\frac{2}{4}}=\frac{1}{4}\)
\(\Rightarrow A\ge1-\frac{1}{2}=\frac{1}{2}.GTNN_A=\frac{1}{2}\)
Câu sau thì min của nó cũng là \(\frac{5}{2}\)và cũng đạt được khi x = y = 1 luôn đấy
\(\dfrac{2}{xy}=\dfrac{4}{2xy}=\dfrac{1}{2xy}+\dfrac{3}{2xy}\)
Ta có: \(\left(x-y\right)^2\ge0\)
\(\Leftrightarrow x^2+y^2-2xy\ge0\)
\(\Leftrightarrow x^2+y^2-2xy+4xy\ge4xy\)
\(\Leftrightarrow\left(x+y\right)^2\ge4xy\)
Hay \(1\ge2xy.2\)
\(\Rightarrow2xy\le\dfrac{1}{2}\)
\(\Rightarrow\dfrac{1}{2xy}\ge\dfrac{1}{\dfrac{1}{2}}=2\)
\(M=\dfrac{2}{xy}+\dfrac{3}{x^2+y^2}=\dfrac{4}{2xy}+\dfrac{3}{x^2+y^2}=\dfrac{1}{2xy}+\dfrac{3}{2xy}+\dfrac{3}{x^2+y^2}\)
\(\ge2+3.\left(\dfrac{1}{2xy}+\dfrac{1}{x^2+y^2}\right)\)
Áp dụng bất đẳng thức Cosy
\(\ge2+3.\left(\dfrac{4}{2xy+x^2+y^2}\right)\)= 2 + 12 = 14
Vậy Min M =14 khi \(x=y=\dfrac{1}{2}\)
\(x^3+y^3+xy=\left(x+y\right)\left(x^2-xy+y^2\right)+xy=x^2+y^2\ge\frac{\left(x+y\right)^2}{1+1}=\frac{1}{2}\) ( Cauchy-Schwarz dạng Engel )
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=\frac{1}{2}\)
...