Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Đặt x = √2.cosα và y = √2.sinα (với α trên [0,3π/2])
Ta có: P = 4√2(sinα + cosα)(1 - sinαcosα) - 6sinαcosα
Đặt t = sinα + cosα = √2.sin(α + π/4) có |t| ≤ √2, nên sinαcosα = (t^2 - 1)/2
suy ra P = -2√2.t^3 - 3t^2 + 6√2.t + 3.
Đến đây bạn áp dụng P' = 0 rồi xét các gtrị cực trị.
2. Đặt x = cosα và y = sinα (với α trên [0,3π/2])
Biến đổi P = (6sin2α + cos2α + 1) / (3 + sin 2α - cos 2α)
Mặt khác lại có (cos2α)^2 + (sin 2α)^2 = 1.
Ta áp dụng P' = 0 tiếp.
Min của biểu thức là I-1+1I+I-1+2I+3=I0I+I1I+3=0+1+3=4
hoặcI-2+1I+I-2+2I+3=I-1I+I0I+3=1+0+3=4
Đặt \(A=\left|x+1\right|+\left|x+2\right|+3\)
Khi \(x\le-2,\) ta có \(A=-x-1-x-2+3=-2x\ge4\)
Khi \(-2< x< -1\), ta có \(A=-x-1+x+2+3=4\)
Khi \(x\ge-1\), ta có \(A=x+1+x+2+3=2x+6\ge4\)
Vậy minA = 4 khi \(-2\le x\le-1\)
B > = 0
Dấu "=" xảy ra <=> x+3=0 và y-2=0 <=> x=-3 và y=2
Vậy ........
P < = 2018
Dấu "=" xảy ra <=> x+2=0 <=> x=-2
Vậy ...........
k mk nha
`a)A=|x-1/2|>=0`
Dấu "=" xảy ra khi `x-1/2=0<=>x=1/2`
`b)B=|x+3/4|+2`
`|x+3/4|>=0`
`=>|x+3/4|+2>=2`
Hay `A>=2`
Dấu "=" xảy ra khi `x+3/4=0<=>x=-3/4`.
\(A=x^2+2.x.2+2^2+1\)
\(=\left(x+2\right)^2+1\)
Ta có : \(\left(x+2\right)^2\ge0\)
\(\Rightarrow\left(x+2\right)^2+1\ge1\)
Dấu " = " xảy ra khi và chỉ khi \(x+2=0\)
\(\Leftrightarrow x=-2\)
Vậy \(Min_A=1\) khi và chỉ khi \(x=-2\)
Bài 1: a) min B=50 (vì |y-3|>=0) khi |y-3|=0=> y=3
b) tương tự min C=-1 khi x=100 và y=-200