K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2021

Tìm giá trị nhỏ nhất của biểu thức:

\(P=3x^2+31y^2-18xy+6x-14y+2021\)

\(=3[\left(x^2-6xy+9y^2\right)+2\left(x-3y\right)+1]+\left(4y^2+4y+1\right)+2017\)

\(=3[\left(x-3y\right)^2+2\left(x-3y\right)+1]+\left(2y+1\right)^2+2017\)

\(=3\left(x-3y+1\right)^2+\left(2y+1\right)^2+2017\ge2017\)

Vậy \(MinP=2017\) khi \(\hept{\begin{cases}x-3y+1=0\\2y+1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{-5}{2}\\y=\frac{-1}{2}\end{cases}}\)

Thực hiện phép tính:

x^2 - x + 1 3x^2 - 2x + 2 3x^4 - 5x^3 + 7x^2 - 4x + 2 - 3x^4 - 3x^3 + 3x^2 -2x^3 + 4x^2 - 4x + 2 - -2x^3 + 2x^2 - 2x 2x^2 - 2x + 2 2x^2 - 2x + 2 0

19 tháng 10 2019

fuck dễ vậy cũng phải hỏi mặc dù tao cũng ko biết làm trong ngoặc kép ha nhìn đây này

\(fuck\\ you\)

1 tháng 6 2020

\(B=3\left(x-2y+1\right)^2+2\left(y+1\right)^2+5\)

19 tháng 10 2019

pâppapapapapapakgfvergyeurfndsghohdgrkejggidgodgniirh3246457934jjkxvxkvsefsvfdscvxvf

7 tháng 12 2021

Giups mk vs ạ ai nhanh mk tick nha

AH
Akai Haruma
Giáo viên
8 tháng 12 2021

Lời giải:
\(x^2+3y^2+10x-14y-2xy=11\)

$\Leftrightarrow (x^2-2xy+y^2)+2y^2+10x-14y=11$

$\Leftrightarrow (x-y)^2+10(x-y)+25+(2y^2-4y+2)=38$

$\Leftrightarrow (x-y+5)^2+2(y-1)^2=38$

$\Rightarrow (x-y+5)^2=38-2(y-1)^2\leq 38$

$\Rightarrow -\sqrt{38}\leq x-y+5\leq \sqrt{38}$

$\Leftrightarrow -\sqrt{38}-5\leq x-y\leq \sqrt{38}-5$
Vậy $A_{\min}=-\sqrt{38}-5$ và $A_{\max}=\sqrt{38}-5$

 

AH
Akai Haruma
Giáo viên
31 tháng 8 2023

Lời giải:
$Q=x^2+3y^2+2xy-6x-14y+200$

$=(x^2+y^2+2xy)+2y^2-6x-14y+200$

$=(x+y)^2-6(x+y)+2y^2-8y+200$

$=(x+y)^2-6(x+y)+9+2(y^2-4y+4)+183$

$=(x+y-3)^2+2(y-2)^2+183\geq 0+2.0+183=183$
Vậy $Q_{\min}=183$. Giá trị này đạt được tại $x+y-3=y-2=0$

$\Leftrightarrow x=1; y=2$

5 tháng 10 2015

Ta tách ra được

\(=\left(x^2-4\text{x}y+4y^2\right)+\left(x^2-4\text{x}y+4y^2\right)+\left(x^2-4\text{x}y+4y^2\right)+2y^2+6\text{x}-8y+10\)

\(=\left(x-2y\right)^2+\left(x-2y\right)^2+\left(x-2y\right)^2+2y^2+6\text{x}-8y+10\)

\(=3\left(x-2y\right)^2+2y^2+6\text{x}-8y+10\)
Bạn để ý rằng nếu x và y cùng bằng không thì những số sau dù có nhân 2 hoặc bình phương đều ra bằng 0 nên ta suy ra

GTNN của \(3\left(x-2y\right)^2+2y^2+6\text{x}-8y+10>=10\)

Dấu bằng xảy ra khi x=y=0

Vậy GTNN của bt là 10 khi x=y=0

tick cho mình nha