Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(3+1\sqrt{6}-\sqrt{33}\right)\left(\sqrt{22}+\sqrt{6}+4\right)\)
\(=\sqrt{3}\left(\sqrt{3}+2\sqrt{2}-\sqrt{11}\right).\sqrt{2}\left(\sqrt{11}+\sqrt{3}+2\sqrt{2}\right)\)
\(=\sqrt{6}\left(\sqrt{3}+2\sqrt{2}-\sqrt{11}\right)\left(\sqrt{3}+2\sqrt{2}+\sqrt{11}\right)\)
\(=\sqrt{6}\left[\left(\sqrt{3}+2\sqrt{2}\right)^2-11\right]=\sqrt{6}\left(11+4\sqrt{6}-11\right)=\sqrt{6}.4\sqrt{6}=6.4=24\)
b) \(\left(\frac{1}{5-2\sqrt{6}}+\frac{2}{5+2\sqrt{6}}\right)\left(15+2\sqrt{6}\right)=\left(\frac{5+2\sqrt{6}+10-4\sqrt{6}}{5^2-\left(2\sqrt{6}\right)^2}\right)\left(15+2\sqrt{6}\right)\)
\(=\left(15-2\sqrt{6}\right)\left(15+2\sqrt{6}\right)=15^2-24=201\)
C) \(\left(\frac{4}{3}.\sqrt{3}+\sqrt{2}+\sqrt{3\frac{1}{3}}\right)\left(\sqrt{1,2}+\sqrt{2}-4\sqrt{\frac{1}{5}}\right)\)
\(=\left(\frac{4}{\sqrt{3}}+\frac{\sqrt{6}}{\sqrt{3}}+\frac{\sqrt{10}}{\sqrt{3}}\right)\left(\frac{\sqrt{6}}{\sqrt{5}}+\frac{\sqrt{10}}{\sqrt{5}}-\frac{4}{\sqrt{5}}\right)\)
\(=\frac{1}{\sqrt{15}}\left(\sqrt{6}+\sqrt{10}+4\right)\left(\sqrt{6}+\sqrt{10}-4\right)=\frac{1}{\sqrt{15}}\left[\left(\sqrt{6}+\sqrt{10}\right)^2-16\right]\)
\(=\frac{1}{\sqrt{15}}\left(16+4\sqrt{15}-16\right)=\frac{4\sqrt{15}}{\sqrt{15}}=4\)
d) \(\sqrt{\left(1-\sqrt{1989}\right)^2}.\sqrt{1990+2\sqrt{1989}}=\sqrt{\left(1-\sqrt{1989}\right)^2}.\sqrt{1989+2\sqrt{1989}+1}\)
\(=\sqrt{\left(1-\sqrt{1989}\right)^2}.\sqrt{\left(\sqrt{1989}+1\right)^2}=\left(\sqrt{1989}-1\right)\left(\sqrt{1989}+1\right)=1989-1=1988\)
e) \(\frac{a-\sqrt{ab}+b}{a\sqrt{a}+b\sqrt{b}}-\frac{1}{a-b}=\frac{a-\sqrt{ab}+b}{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}-\frac{1}{a-b}=\frac{\sqrt{a}-\sqrt{b}}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}-\frac{1}{a-b}=\frac{\sqrt{a}-\sqrt{b}-1}{a-b}\)
Toán này lớp 8 đúng không ta
\(\sqrt{-x^2+2x+2}=\sqrt{3-\left(x^2-2x+1\right)}\)
= \(\sqrt{3-\left(x-1\right)^2}\le\sqrt{3}\)
Đạt được khi x = 1
Câu còn lại làm tương tự
a) A= (\(\left(\frac{1+\sqrt{x}}{1+\sqrt{x}}-\frac{\sqrt{x}}{1+\sqrt{x}}\right):\left(\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x-2}\right)}+\frac{\sqrt{x}+2}{x-2\sqrt{x}-3\sqrt{x}+6}\right)\)
A=\(\left(\frac{1+\sqrt{x}-\sqrt{x}}{1+\sqrt{x}}\right):\left(\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}+\frac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)-3\left(\sqrt{x}-2\right)}\right)\)
A= \(\left(\frac{1}{1+\sqrt{x}}\right):\left(\frac{x-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{x-4}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}+\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right)\)
A=\(\left(\frac{1}{1+\sqrt{x}}\right):\left(\frac{x-9-x+4+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right)\)
A=\(\left(\frac{1}{1+\sqrt{x}}\right):\left(\frac{\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right)\)
A=\(\frac{\sqrt{x}-2}{\sqrt{x}+1}\)
ĐKXĐ : \(x\ne\pm1\)
a/ \(A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}\right):\left(\frac{2}{x^2-1}-\frac{x}{x-1}+\frac{1}{x+1}\right)\)
\(=\frac{x^2+2x+1-\left(x^2-2x+1\right)}{\left(x-1\right)\left(x+1\right)}:\frac{2-x\left(x+1\right)+\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}\)
\(=\frac{4x}{\left(x-1\right)\left(x+1\right)}.\frac{\left(x-1\right)\left(x+1\right)}{1-x^2}=\frac{4x}{1-x^2}\)
b/ Ta có \(3+2\sqrt{2}=\left(\sqrt{2}+1\right)^2\Rightarrow\sqrt{3+\sqrt{8}}=\sqrt{2}+1\)
Suy ra : Nếu x = \(\sqrt{2}+1\) thì \(A=\frac{4\left(\sqrt{2}+1\right)}{1-\left(\sqrt{2}+1\right)^2}=\frac{4\left(\sqrt{2}+1\right)}{-\sqrt{2}.\sqrt{2}\left(\sqrt{2}+1\right)}=-\frac{4}{2}=-2\)
c/ \(A=\sqrt{5}\Rightarrow4x=\sqrt{5}\left(1-x^2\right)\Leftrightarrow\sqrt{5}x^2+4x-\sqrt{5}=0\)
Nhân cả hai vế của pt trên với \(\sqrt{5}\ne0\)
Được \(5x^2+4\sqrt{5}x-5=0\) . Đặt \(t=x\sqrt{5}\) pt trở thành \(t^2+4t-5=0\Leftrightarrow\left(t+5\right)\left(t-1\right)=0\) \(\Leftrightarrow\left[\begin{array}{nghiempt}t=1\\t=-5\end{array}\right.\)
Với t = 1 thì \(x=\frac{1}{\sqrt{5}}=\frac{\sqrt{5}}{5}\)
Với t = -5 thì \(x=-\frac{5}{\sqrt{5}}=-\sqrt{5}\)
\(A=\left[\frac{x^2+2x+1-x^2+2x-1}{x^2-1}\right]:\left[\frac{2-x^2-x+x-1}{x^2-1}\right]=\left[\frac{4x}{x^2-1}\right].\left[\frac{x^2-1}{1-x^2}\right]=\frac{4x}{1-x^2}\)
CHỨNG MINH :
Đặt \(x=\sqrt{a-1},x\ge0\)Ta có ; \(a=x^2+1\)
\(\Rightarrow a-3\sqrt{a-1}+2=\left(x^2+1\right)-3x+2=x^2-3x+3=\left(x^2-2.x.\frac{3}{2}+\frac{9}{4}\right)+3-\frac{9}{4}=\left(x-\frac{3}{2}\right)^2+\frac{3}{4}>0\)với mọi x.
Vậy \(a-3\sqrt{a-1}+2>0\left(a\ge1\right)\)(ddpcm)
TÍNH : Mình nghĩ đề bài bị sai, để mình sửa lại nhé ^^
Đề bài : Tính \(\left(1-\sqrt{1990}\right)\left(\sqrt{1991+2\sqrt{1990}}\right)\)
Ta có : \(\left(1-\sqrt{1990}\right)\left(\sqrt{1991+2\sqrt{1990}}\right)=\left(1-\sqrt{1990}\right)\left(\sqrt{1990+2\sqrt{1990}+1}\right)=\left(1-\sqrt{1990}\right)\left(\sqrt{\left(\sqrt{1990}+1\right)^2}\right)=\left(1-\sqrt{1990}\right)\left(1+\sqrt{1990}\right)=1^2-\left(\sqrt{1990}\right)^2=1-1990=-1989\)
\(A=\frac{2\sqrt{x}+1}{x+\sqrt{x}+1}\)với \(x=16\Rightarrow\sqrt{x}=4\)
\(=\frac{2.4+1}{16+4+1}=\frac{9}{21}=\frac{3}{7}\)
Vậy với x = 16 thì A nhận giá trị là 3/7
b, Sửa rút gọn biểu thức B nhé
Với \(x\ge0;x\ne1\)
\(B=\left(\frac{1}{\sqrt{x}-1}-\frac{\sqrt{x}}{1-x}\right):\left(\frac{\sqrt{x}}{\sqrt{x}-1}-1\right)\)
\(=\left(\frac{1}{\sqrt{x}-1}+\frac{\sqrt{x}}{\left(\sqrt{x}\pm1\right)}\right):\left(\frac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}-1}\right)\)
\(=\frac{\sqrt{x}+1+\sqrt{x}}{\left(\sqrt{x}\pm1\right)}.\frac{\sqrt{x}-1}{1}=\frac{2\sqrt{x}}{\sqrt{x}+1}\)
c, Ta có : \(M=\frac{A}{B}\)hay \(M=\frac{\frac{2\sqrt{x}+1}{x+\sqrt{x}+1}}{\frac{2\sqrt{x}}{\sqrt{x}+1}}\)
\(=\frac{2\sqrt{x}+1}{x+\sqrt{x}+1}.\frac{\sqrt{x}+1}{2\sqrt{x}}\)
\(=\frac{\left(2\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}{2\sqrt{x}\left(x+\sqrt{x}+1\right)}\)
ĐKXĐ : \(x,y>0\)
a/ \(A=\left(\sqrt{x}+\frac{y-\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\right):\left(\frac{x}{\sqrt{xy}+y}+\frac{y}{\sqrt{xy}-x}+\frac{x+y}{\sqrt{xy}}\right)\)
\(=\left(\frac{x+\sqrt{xy}+y-\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\right):\left(\frac{x\sqrt{x}\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right).\sqrt{x}}-\frac{y\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}.\sqrt{y}\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}-\frac{\left(x+y\right)\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\right)\)
\(=\frac{x+y}{\sqrt{x}+\sqrt{y}}:\frac{x^2-x\sqrt{xy}-y\sqrt{xy}-y^2-x^2+y^2}{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}=\frac{x+y}{\sqrt{x}+\sqrt{y}}:\frac{-\sqrt{xy}\left(x+y\right)}{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}\)
\(=\frac{x+y}{\sqrt{x}+\sqrt{y}}.\frac{-\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}{x+y}=\sqrt{y}-\sqrt{x}\)
b/ Ta có ; \(4+2\sqrt{3}=\left(\sqrt{3}+1\right)^2\)
\(\Rightarrow B=\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{3}=\sqrt{3}+1-\sqrt{3}=1\)
\(A=\sqrt{\left(1989-x\right)^2}+\sqrt{\left(1990-x\right)^2}=\left|x-1989\right|+\left|1990-x\right|\)
Áp dụng bất đẳng thức : \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\). Dấu "=" xảy ra khi a,b cùng dấu.
\(A=\left|x-1989\right|+\left|1990-x\right|\ge\left|x-1989+1990-x\right|=1\)
\(\Rightarrow A\ge1\). Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-1989\ge0\\1990-x\ge0\end{cases}}\Leftrightarrow1989\le x\le1990\)
Vậy Min A = 1 \(\Leftrightarrow1989\le x\le1990\)