Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm min của các biểu thức sau:
A=3x^2 - 6x - 1
B=x^2 - 2x + y^2 - 4y + 2016
C=(x-1).(x+2).(x+3).(x+6)
LÀM dùm bn 1 câu khó nhất nhé;
B = (x-1)2 + ( y -2)2 +2016 -1 -4
GTNN B = 2011
A=3(x^2-2x-1/3)
=3(x-1)^2 -4/3
ta có (x-1)^2 >= 0
suy ra a>= 0-4/3
dấu bằng xảy ra khi x-1=0
x=1
vậy giá trị nhỏ nhất của A là -4/3 khi x=1
a)đkxđ: \(x+1\ne0\Leftrightarrow x\ne-1\)
\(B=\frac{x^2-x+1}{x^2+2x+1}=\frac{x^2+2x+1-3x}{x^2+2x+1}=1-\frac{3x}{\left(x+1\right)^2}=1-\frac{3\left(x+1\right)-3}{\left(x+1\right)^2}\)
\(B=1-\frac{3}{x+1}+\frac{3}{\left(x+1\right)^2}\)
Đặt \(\frac{1}{x+1}=a\)\(\Rightarrow B=3a^2-3a+1=3\left(a^2-a+\frac{1}{3}\right)=3\left(a^2-2a.\frac{1}{2}+\frac{1}{4}+\frac{1}{12}\right)=3\left(a-\frac{1}{2}\right)^2+\frac{1}{4}\)
Vì \(\left(a-\frac{1}{2}\right)^2\ge0\Leftrightarrow B\ge\frac{1}{4}\)
Dấu "=" xảy ra khi \(a=\frac{1}{2}\Leftrightarrow\frac{1}{x+1}=\frac{1}{2}\Leftrightarrow x+1=2\Leftrightarrow x=1\left(nhận\right)\)
Vậy GTNN của B là \(\frac{1}{4}\)khi \(x=1\)
b) đkxđ \(x-1\ne0\Leftrightarrow x\ne1\)\(E=\frac{3x^2-8x+6}{x^2-2x+1}=\frac{3\left(x^2-2x+1\right)-2x+3}{x^2-2x+1}=3-\frac{2x-3}{\left(x-1\right)^2}=3-\frac{2\left(x-1\right)-1}{\left(x-1\right)^2}\)
\(=3-\frac{2}{x-1}+\frac{1}{\left(x-1\right)^2}\)
Đặt \(\frac{1}{x-1}=b\)\(\Rightarrow E=b^2-2b+3=b^2-2b+1+2=\left(b-1\right)^2+2\)
Vì \(\left(b-1\right)^2\ge0\Leftrightarrow B\ge2\)
Dấu "=" xảy ra khi \(b-1=0\Leftrightarrow b=1\Leftrightarrow\frac{1}{x-1}=1\Leftrightarrow x-1=1\Leftrightarrow x=2\left(nhận\right)\)
Vậy GTNN của B là 2 khi x = 2
a, ĐK : \(x\ne1;2;3;4;5\)
b, \(\dfrac{1}{x\left(x-1\right)}+\dfrac{1}{\left(x-1\right)\left(x-2\right)}+\dfrac{1}{\left(x-2\right)\left(x-3\right)}+\dfrac{1}{\left(x-3\right)\left(x-4\right)}+\dfrac{1}{\left(x-4\right)\left(x-5\right)}\)
\(=\dfrac{1}{x}-\dfrac{1}{x-1}+\dfrac{1}{x-1}-\dfrac{1}{x-2}+\dfrac{1}{x-2}-\dfrac{1}{x-3}+\dfrac{1}{x-3}-\dfrac{1}{x-4}+\dfrac{1}{x-4}-\dfrac{1}{x-5}\)
\(=\dfrac{1}{x}-\dfrac{1}{x-5}=\dfrac{x-5-x}{x\left(x-5\right)}=\dfrac{-5}{x\left(x-5\right)}\)
a. \(A=\left(\dfrac{2-3x}{x^2+2x-3}-\dfrac{x+3}{1-x}-\dfrac{x+1}{x+3}\right):\dfrac{3x+12}{x^3-1}\left(ĐKXĐ:x\ne1;x\ne-3\right)\)
\(=\left(\dfrac{2-3x}{\left(x-1\right)\left(x+3\right)}+\dfrac{x+3}{x-1}-\dfrac{x+1}{x+3}\right):\dfrac{3x+12}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\left(\dfrac{2-3x}{\left(x-1\right)\left(x+3\right)}+\dfrac{\left(x+3\right)^2}{\left(x-1\right)\left(x+3\right)}-\dfrac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+3\right)}\right):\dfrac{3x+12}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{2-3x+x^2+6x+9-x^2+1}{\left(x-1\right)\left(x+3\right)}:\dfrac{3x+12}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{3x+12}{\left(x-1\right)\left(x+3\right)}:\dfrac{3x+12}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{3x+12}{\left(x-1\right)\left(x+3\right)}.\dfrac{\left(x-1\right)\left(x^2+x+1\right)}{3x+12}=\dfrac{x^2+x+1}{x+3}\)
\(M=A.B=\dfrac{x^2+x+1}{x+3}.\dfrac{x^2+x-2}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x^2+x-2}{x+3}\)
b. -Để M thuộc Z thì:
\(\left(x^2+x-2\right)⋮\left(x+3\right)\)
\(\Rightarrow\left(x^2+3x-2x-6+4\right)⋮\left(x+3\right)\)
\(\Rightarrow\left[x\left(x+3\right)-2\left(x+3\right)+4\right]⋮\left(x+3\right)\)
\(\Rightarrow4⋮\left(x+3\right)\)
\(\Rightarrow x+3\in\left\{1;2;4;-1;-2;-4\right\}\)
\(\Rightarrow x\in\left\{-2;-1;1;-4;-5;-7\right\}\)
c. \(A^{-1}-B=\dfrac{x+3}{x^2+x+1}-\dfrac{x^2+x-2}{x^3-1}\)
\(=\dfrac{x+3}{x^2+x+1}-\dfrac{x^2+x-2}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{\left(x+3\right)\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}-\dfrac{x^2+x-2}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{x^2-x+3x-3-x^2-x+2}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{x-1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{1}{x^2+x+1}\)
\(=\dfrac{1}{x^2+2.\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}}=\dfrac{1}{\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\le\dfrac{1}{\dfrac{3}{4}}=\dfrac{4}{3}\)
\(Max=\dfrac{4}{3}\Leftrightarrow x=\dfrac{-1}{2}\)
\(\frac{x^2+15x+16}{3x}=\frac{x^2-8x+16+23x}{3x}=\frac{\left(x-4\right)^2}{3x}+\frac{23}{3}\ge\frac{23}{3}\), với mọi x >0
Dấu = xảy ra <=> x =4
Cách khác : \(\frac{x^2+15x+16}{3x}=\frac{x}{3}+\frac{15}{3}+\frac{16}{3x}\)
Áp dụng bđt Cauchy với x/3 và 16/3x ta có :\(\frac{x}{3}+\frac{16}{3x}\ge2\sqrt{\frac{x}{3}.\frac{16}{3x}}=\frac{8}{3}\Rightarrow\frac{x}{3}+\frac{16}{3x}+\frac{15}{3}\ge\frac{23}{3}\)
Dấu = xảy ra <=> x/3 = 16/3x <=> 3x2 = 48 <=> x =4
a: ĐKXĐ: \(x\notin\left\{0;1;2;3;4;5\right\}\)
b: \(P=\dfrac{1}{\left(x-1\right)\cdot x}+\dfrac{1}{\left(x-2\right)\left(x-1\right)}+\dfrac{1}{\left(x-2\right)\left(x-3\right)}+\dfrac{1}{\left(x-3\right)\left(x-4\right)}+\dfrac{1}{\left(x-4\right)\left(x-5\right)}\)
\(=\dfrac{1}{x-1}-\dfrac{1}{x}+\dfrac{1}{x-2}-\dfrac{1}{x-1}+\dfrac{1}{x-3}-\dfrac{1}{x-2}+\dfrac{1}{x-4}-\dfrac{1}{x-3}+\dfrac{1}{x-5}-\dfrac{1}{x-4}\)
\(=\dfrac{1}{x-5}-\dfrac{1}{x}=\dfrac{x-x+5}{x\left(x-5\right)}=\dfrac{5}{x\left(x-5\right)}\)
\(1,Sửa:A=4x^4+4x^2y+y^2+2=\left(2x^2+y\right)^2+2\ge2\\ A_{min}=2\Leftrightarrow2x^2+y=0\Leftrightarrow x^2=-\dfrac{y}{2}\\ 2,B=\left(x+y\right)^2+\left(y+1\right)^2+12\ge12\\ B_{min}=12\Leftrightarrow\left\{{}\begin{matrix}x=-y=1\\y=-1\end{matrix}\right.\)
a: ĐKXĐ: \(x\notin\left\{0;1;2;3;4;5\right\}\)
b: \(P=\dfrac{1}{x^2-x}+\dfrac{1}{x^2-3x+2}+\dfrac{1}{x^2-5x+6}+\dfrac{1}{x^2-7x+12}+\dfrac{1}{x^2-9x+20}\)
\(=\dfrac{1}{x\left(x-1\right)}+\dfrac{1}{\left(x-1\right)\left(x-2\right)}+\dfrac{1}{\left(x-2\right)\left(x-3\right)}+\dfrac{1}{\left(x-3\right)\left(x-4\right)}+\dfrac{1}{\left(x-4\right)\left(x-5\right)}\)
\(=\dfrac{-1}{x}+\dfrac{1}{x-1}-\dfrac{1}{x-1}+\dfrac{1}{x-2}-\dfrac{1}{x-2}+\dfrac{1}{x-3}-\dfrac{1}{x-3}+\dfrac{1}{x-4}-\dfrac{1}{x-4}+\dfrac{1}{x-5}\)
\(=\dfrac{1}{x-5}-\dfrac{1}{x}\)
\(=\dfrac{x-\left(x-5\right)}{x\left(x-5\right)}=\dfrac{5}{x\left(x-5\right)}\)
c: \(x^3-x^2+2=0\)
=>\(x^3+x^2-2x^2+2=0\)
=>\(x^2\cdot\left(x+1\right)-2\left(x-1\right)\left(x+1\right)=0\)
=>\(\left(x+1\right)\left(x^2-2x+2\right)=0\)
=>x+1=0
=>x=-1
Khi x=-1 thì \(P=\dfrac{5}{\left(-1\right)\left(-1-5\right)}=\dfrac{5}{\left(-1\right)\cdot\left(-6\right)}=\dfrac{5}{6}\)
(x−1)(x+2)(x+3)(x+6)= [(x−1)(x+6)][(x+2)(x+3)] = (x^2+5x−6)(x^2+5x+6) = (x^2−5x)^2−36≥−36
=> Giá trị nhỏ nhất biểu thức đã cho là -36 xảy ra khi và chỉ khi (x^2−5x)^2=0
<=> x(x−5)=0
<=> x=0 hoặc x−5=0
<=> x=0 hoặc x=5
C=(x+1)(x-2)(x-3)(x-6)
=(x+1)(x-6)(x-2)(x-3)
=(x^2-5x-6)(x^2-5x+6)
=(x^2-5x)^2-6^2
=[x(x-5)]^2-6^2
để Cmin thì [x(x-5)]^2 phải min
mà [x(x-5)]^2\(\ge\)0 nên [x(x-5)]^2min=0 =>C=0-6^2=-6^2
<=>x=0 hoặc x-5=0<=>x=5
vậy Cmin=-6^2 khi x=0 hoặc x=5
ta có :
\(\frac{x^2-3x+12}{x-1}=x-2+\frac{10}{x-1}=x-1+\frac{10}{x-1}-1\)
Ta cần điều kiện \(x-1>0\) thì biểu thức mới tồn tại giá trị nhỏ nhất. khi đó
áp dụng bất đẳng thức Cauchy ta có \(x-1+\frac{10}{x-1}-1\ge2\sqrt{10}-1\)