Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3+\sqrt{2x-3}=x\) (ĐKXĐ: x \(\ge\)1,5)
\(\Leftrightarrow\sqrt{2x-3}=x-3\)
\(\Leftrightarrow2x-3=x^2-6x+9\)
\(\Leftrightarrow-x^2+8x-12=0\)
\(\Leftrightarrow-\left(x^2-8x+12\right)=0\)
\(\Leftrightarrow x^2-6x-2x+12=0\)
\(\Leftrightarrow x.\left(x-6\right)-2.\left(x-6\right)=0\)
\(\Leftrightarrow\left(x-6\right)\left(x-2\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x=6\\x=2\end{cases}\left(\text{TMĐK}\right)}\)
Vậy ...
ĐK: \(-2\le x\le2\)
Đặt: \(\sqrt{x+2}+\sqrt{2-x}=t>0\)
=> \(t^2=\left(\sqrt{x+2}+\sqrt{2-x}\right)^2\le2\left(x+2+2-x\right)=8\)
=> \(0< t\le2\sqrt{2}\)
Ta có: \(t^2=\left(\sqrt{x+2}+\sqrt{2-x}\right)^2=x+2+2-x+2\sqrt{4-x^2}\)
=> \(\sqrt{4-x^2}=\frac{t^2-4}{2}\)
Ta có: \(P=t-\frac{t^2-4}{2}=\frac{\left(t+2\sqrt{2}-2\right)\left(2\sqrt{2}-t\right)}{2}+2\sqrt{2}-2\ge2\sqrt{2}-2\)
=> min P = \(2\sqrt{2}-2\) tại \(t=2\sqrt{2}\)khi đó x = 0
Vậy:...
Từ bài ra ta có.
\(x+y=\sqrt{x+6}+\sqrt[]{y+6}\)
\(P^2=x+y+12+2.\sqrt{x+6}.\sqrt{y+6}=P+12+2.\sqrt{x+6}.\sqrt{y+6}\)
Mà \(2\sqrt{\left(x+6\right)\left(y+6\right)}\le x+6+y+6=P+12\)
Nên \(P^2\le2P+24\Leftrightarrow P^2-2P+1\le25\)
==>\(\left(P-1\right)^2\le25\Leftrightarrow-5\le P-1\le5\)
Đến đây bạn tự giải tiếp hộ nhé.
Có gì sai sót xin thứ lỗi.
áp dụng BĐT C-S dạng engel : A >/ x+y+z
áp dụng BĐT AM-GM x+y+z >/ căn xy + căn yz + căn zx
=>minA = 1
Có A = x - căn x = x - căn x + 1/4 -1/4 = ( căn x - 1/2)2- 1/4 >= -1/4
Dấu "=" xáy ra <-> x = 1/4
Vậy min của A là -1/4 <-> x= 1/4
ta có x>=0 =>x min=0=>Amin=0-\(\sqrt{0}\)