Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2: \(G=x^2+y^2+2>=2\)
Dấu '=' xảy ra khi x=y=0
3: \(H=\left(x+1\right)^2+\left(y-2\right)^2+3>=3\)
Dấu '=' xảy ra khi x=-1 và y=2
Ta có: `A` lớn nhất `<=> (2015)/(18+12|x-6|)` nhỏ nhất.
`<=> 18+12|x-6|` nhỏ nhất.
`<=> 12|x-6|` nhỏ nhất, do `18` là hằng.
`<=> 12|x-6|=0`
`<=> x=6 => A=2015/18`
Vậy...
`b, B>=x+1/3+1-x`
`=4/3`.
Đẳng thức xảy ra `<=> x+1/3=1-x`
`<=> x=2/3`.
Vậy...
Bài 1:
\(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+...+\left|x+\frac{1}{101}\right|=101x\)
Ta thấy:
\(VT\ge0\Rightarrow VP\ge0\Rightarrow101x\ge0\Rightarrow x\ge0\)
\(\Rightarrow\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{6}\right)+...+\left(x+\frac{1}{101}\right)=101x\)
\(\Rightarrow\left(x+x+...+x\right)+\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{101}\right)=0\)
\(\Rightarrow10x+\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{10.11}\right)=0\)
\(\Rightarrow10x+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10}-\frac{1}{11}\right)=0\)
\(\Rightarrow10x+\left(1-\frac{1}{11}\right)=0\)
\(\Rightarrow10x+\frac{10}{11}=0\)
\(\Rightarrow10x=-\frac{10}{11}\Rightarrow x=-\frac{1}{11}\)(loại,vì x\(\ge\)0)
Bài 2:
Ta thấy: \(\begin{cases}\left(2x+1\right)^{2008}\ge0\\\left(y-\frac{2}{5}\right)^{2008}\ge0\\\left|x+y+z\right|\ge0\end{cases}\)
\(\Rightarrow\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|\ge0\)
Mà \(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)
\(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)
\(\Rightarrow\begin{cases}\left(2x+1\right)^{2008}=0\\\left(y-\frac{2}{5}\right)^{2008}=0\\\left|x+y+z\right|=0\end{cases}\)\(\Rightarrow\begin{cases}2x+1=0\\y-\frac{2}{5}=0\\x+y+z=0\end{cases}\)
\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\x+y+z=0\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{2}+\frac{2}{5}+z=0\end{cases}\)
\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{10}=-z\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{1}{10}\end{cases}\)
Ta có \(\left|y-1\right|+\left|y-2\right|+\left|y-3\right|+1=\left|y-1\right|+\left|y-2\right|+\left|3-y\right|+1\ge2+\left|y-2\right|+1=3+\left|y-2\right|\ge3\)
\(\dfrac{6}{\left(x-1\right)^2+2}\le\dfrac{6}{0+2}=3\)
\(\Leftrightarrow VT\le3\le VP\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\\left(y-1\right)\left(3-y\right)\ge0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
Vậy PT có nghiệm \(\left(x;y\right)=\left(1;2\right)\)
Tìm x,y biết
\(\dfrac{6}{\left(x-1\right)^2+2}=\left|y-1\right|+\left|y-2\right|+\left|y-3\right|+1\)
a) (x-1):2/3=-2/5
=>x-1=-4/15
=>x=11/15
b) |x-1/2|-1/3=0
=>|x-1/2|=1/3
=>\(\left\{{}\begin{matrix}x=\dfrac{1}{3}+\dfrac{1}{2}=\dfrac{5}{6}\\x=-\dfrac{1}{3}+\dfrac{1}{2}=\dfrac{1}{6}\end{matrix}\right.\)
c) Tương Tự câu B
Vì \(\left(x+1\right)^2\ge0\left(\forall x\in Z\right)\)
\(\left(y+3\right)^2\ge0\left(\forall y\in Z\right)\)
\(\Rightarrow B=\left(x+1\right)^2+\left(y+3\right)^2+1\ge1\)
Dấu "=" xảy ra khi: (x+1)2 = 0 => x + 1 = 0 => x = -1
(y+3)2 = 0 => y + 3 = 0 => y = -3
Vậy Bmin = 1 <=> x = -1 ; y = -3
Ta có : (x+1)^2 ; (y+3)^2 đều >= 0
=> B >= 0+0+1 = 1
Dấu "=" xảy ra <=> x+1=0 và y+3=0 <=> x=-1 và y=-3
Vậy Min B = 1 <=> x=-1 và y=-3
Tk mk nha