Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2 :
Ta có : \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\in R\)
\(\Rightarrow A=\frac{3}{4}+\left(x-\frac{1}{2}\right)^2\ge\frac{3}{4}\forall x\in R\)
Vậy Amin = \(\frac{3}{4}\) dấu "=" chỉ sảy ra khi x = \(\frac{1}{2}\)
Câu a hình như sai đề mk sửa nha
a)\(A=\left(2x+\frac{1}{3}\right)^4-1\)
Vì \(\left(2x+\frac{1}{3}\right)^4\ge0\)
Suy ra:\(\left(2x+\frac{1}{3}\right)^4-1\ge-1\)
Dấu = xảy ra khi \(2x+\frac{1}{3}=0\)
\(2x=-\frac{1}{3}\)
\(x=-\frac{1}{6}\)
Vậy Min A=-1 khi \(x=-\frac{1}{6}\)
b)\(B=-\left(\frac{4}{9}x-\frac{2}{15}\right)^6+3\)
\(B=3-\left(\frac{4}{9}x-\frac{2}{15}\right)^6\)
Vì \(-\left(\frac{4}{9}x-\frac{2}{15}\right)^6\le0\)
Suy ra:\(3-\left(\frac{4}{9}x-\frac{2}{15}\right)^6\le3\)
Dấu = xảy ra khi \(\frac{4}{9}x-\frac{2}{15}=0\)
\(\frac{4}{9}x=\frac{2}{15}\)
\(x=\frac{3}{10}\)
Vậy Max B=3 khi \(x=\frac{3}{10}\)
a)
\(\begin{array}{l}x:{\left( {\frac{{ - 1}}{2}} \right)^3} = - \frac{1}{2}\\x = - \frac{1}{2}.{\left( {\frac{{ - 1}}{2}} \right)^3}\\x = {\left( {\frac{{ - 1}}{2}} \right)^4}\\x = \frac{1}{{16}}\end{array}\)
Vậy \(x = \frac{1}{{16}}\).
b)
\(\begin{array}{l}x.{\left( {\frac{3}{5}} \right)^7} = {\left( {\frac{3}{5}} \right)^9}\\x = {\left( {\frac{3}{5}} \right)^9}:{\left( {\frac{3}{5}} \right)^7}\\x = {\left( {\frac{3}{5}} \right)^2}\\x = \frac{9}{{25}}\end{array}\)
Vậy \(x = \frac{9}{{25}}\).
c)
\(\begin{array}{l}{\left( {\frac{{ - 2}}{3}} \right)^{11}}:x = {\left( {\frac{{ - 2}}{3}} \right)^9}\\x = {\left( {\frac{{ - 2}}{3}} \right)^{11}}:{\left( {\frac{{ - 2}}{3}} \right)^9}\\x = {\left( {\frac{{ - 2}}{3}} \right)^2}\\x = \frac{4}{9}.\end{array}\)
Vậy \(x = \frac{4}{9}\).
d)
\(\begin{array}{l}x.{\left( {0,25} \right)^6} = {\left( {\frac{1}{4}} \right)^8}\\x.{\left( {\frac{1}{4}} \right)^6} = {\left( {\frac{1}{4}} \right)^8}\\x = {\left( {\frac{1}{4}} \right)^8}:{\left( {\frac{1}{4}} \right)^6}\\x = {\left( {\frac{1}{4}} \right)^2}\\x = \frac{1}{{16}}\end{array}\)
Vậy \(x = \frac{1}{{16}}\).
Ta có: `A` lớn nhất `<=> (2015)/(18+12|x-6|)` nhỏ nhất.
`<=> 18+12|x-6|` nhỏ nhất.
`<=> 12|x-6|` nhỏ nhất, do `18` là hằng.
`<=> 12|x-6|=0`
`<=> x=6 => A=2015/18`
Vậy...
`b, B>=x+1/3+1-x`
`=4/3`.
Đẳng thức xảy ra `<=> x+1/3=1-x`
`<=> x=2/3`.
Vậy...
Chỗ dấu "..." bạn không cần ghi.Mình viết vậy cho dễ nhìn. Bài này có một lời giải khá độc đáo trong sách nâng cao của mình.
a) Số thừa số âm ở VT chẵn.
Mà \(x-\frac{2}{5}< x+\frac{3}{7}< x+\frac{3}{4}\) nên
\(\orbr{\begin{cases}x-\frac{2}{5}>0\\x+\frac{3}{7}< 0..và...x+\frac{3}{4}>0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x>\frac{2}{5}\\x< -\frac{3}{7}...và...x>-\frac{3}{4}\end{cases}\Leftrightarrow\orbr{\begin{cases}x>\frac{2}{5}\\-\frac{3}{4}< x< -\frac{3}{7}\end{cases}}}\)
Vì \(\left(x+1\right)^2\ge0\left(\forall x\in Z\right)\)
\(\left(y+3\right)^2\ge0\left(\forall y\in Z\right)\)
\(\Rightarrow B=\left(x+1\right)^2+\left(y+3\right)^2+1\ge1\)
Dấu "=" xảy ra khi: (x+1)2 = 0 => x + 1 = 0 => x = -1
(y+3)2 = 0 => y + 3 = 0 => y = -3
Vậy Bmin = 1 <=> x = -1 ; y = -3
Ta có : (x+1)^2 ; (y+3)^2 đều >= 0
=> B >= 0+0+1 = 1
Dấu "=" xảy ra <=> x+1=0 và y+3=0 <=> x=-1 và y=-3
Vậy Min B = 1 <=> x=-1 và y=-3
Tk mk nha