K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 9 2019

minA=0 do tổnngcác bình phương không âm

28 tháng 9 2019

làm đi

21 tháng 7 2017

a ) \(A=\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}+\sqrt{x^2-6x+9}\)

\(=\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-2\right)^2}+\sqrt{\left(x-3\right)^2}\)

\(=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|\)

\(\ge\left|x-1+3-x\right|+\left|x-2\right|=\left|x-2\right|+2\ge2\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(x-1\right)\left(3-x\right)\ge0\\\left|x-2\right|=0\end{cases}\Rightarrow x=2}\)(TM)

Vậy \(A_{min}=2\Leftrightarrow x=2\)

b ) \(B=\sqrt{x-2\sqrt{x-1}}-\sqrt{x+2\sqrt{x-1}}\)

\(=\sqrt{x-1-2\sqrt{x-1}+1}-\sqrt{x-1+2\sqrt{x-1}+1}\)

\(=\sqrt{\left(\sqrt{x-1}-1\right)^2}-\sqrt{\left(\sqrt{x-1}+1\right)^2}\)

\(=\left|\sqrt{x-1}-1\right|-\left|\sqrt{x-1}+1\right|\)

\(\le\left|\sqrt{x-1}-1-\sqrt{x-1}-1\right|=2\)có GTLN là 2

15 tháng 9 2015

B = \(l1-xl+lx+3l+lx+2l\ge l1-x+x+3l+lx+2l\)

\(=4+lx+2l\)

Vậy GTNn là 4 khi x = -2 

21 tháng 6 2023

a)

`4(x-2)^2 =4`

`<=>(x-2)^2 =1`

`<=>x-2=1` hoặc `x-2=-1`

`<=>x=3` hoặc `x=1`

b)

`5(x^2 -6x+9)=5`

`<=>(x-3)^2 =1`

`<=>x-3=1`hoặc `x-3=-1`

`<=>x=4` hoặc `x=2`

c)

`4x^2 +4x+1=0`

`<=>(2x+1)^2 =0`

`<=>2x+1=0`

`<=>x=-1/2`

d)

`9x^2 +6x+1=2`

`<=>(3x+1)^2 =2`

\(< =>\left[{}\begin{matrix}3x+1=\sqrt{2}\\3x+1=-\sqrt{2}\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=\dfrac{\sqrt{2}-1}{3}\\x=\dfrac{-\sqrt{2}-1}{3}\end{matrix}\right.\)

21 tháng 6 2023

câu (a), (b) thiếu trường hợp

x - 2 = -1 

và x - 3 = -1

1: Ta có: \(A=\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\)

\(=\dfrac{2\sqrt{x}-9-\left(x-9\right)+\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{2\sqrt{x}-9-x+9+2x-4\sqrt{x}+\sqrt{x}-2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{x-\sqrt{x}-2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)

Để \(A=-\dfrac{1}{\sqrt{x}}\) thì \(x+\sqrt{x}=-\sqrt{x}+3\)

\(\Leftrightarrow x+2\sqrt{x}-3=0\)

\(\Leftrightarrow\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)=0\)

\(\Leftrightarrow x=1\left(nhận\right)\)

2: Để A nguyên thì \(\sqrt{x}+1⋮\sqrt{x}-3\)

\(\Leftrightarrow\sqrt{x}-3\in\left\{-1;1;2;-2;4;-4\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{2;4;5;1;7\right\}\)

\(\Leftrightarrow x\in\left\{16;25;1;49\right\}\)

25 tháng 1

\(H=\dfrac{x^2-6x+1}{x^2+1}=\dfrac{4x^2+4-3x^2-6x-3}{x^2+1}\)

\(=\dfrac{4\left(x^2+1\right)-3\left(x^2+2x+1\right)}{x^2+1}=4-\dfrac{3\left(x+1\right)^2}{x^2+1}\)

Ta có: \(\dfrac{3\left(x+1\right)^2}{x^2+1}\ge0\forall x\Rightarrow H=4-\dfrac{3\left(x+1\right)^2}{x^2+1}\le4\forall x\)

\(\Rightarrow H_{max}=4\Leftrightarrow x+1=0\Leftrightarrow x=-1\)