Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) \(A=\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}+\sqrt{x^2-6x+9}\)
\(=\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-2\right)^2}+\sqrt{\left(x-3\right)^2}\)
\(=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|\)
\(\ge\left|x-1+3-x\right|+\left|x-2\right|=\left|x-2\right|+2\ge2\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(x-1\right)\left(3-x\right)\ge0\\\left|x-2\right|=0\end{cases}\Rightarrow x=2}\)(TM)
Vậy \(A_{min}=2\Leftrightarrow x=2\)
b ) \(B=\sqrt{x-2\sqrt{x-1}}-\sqrt{x+2\sqrt{x-1}}\)
\(=\sqrt{x-1-2\sqrt{x-1}+1}-\sqrt{x-1+2\sqrt{x-1}+1}\)
\(=\sqrt{\left(\sqrt{x-1}-1\right)^2}-\sqrt{\left(\sqrt{x-1}+1\right)^2}\)
\(=\left|\sqrt{x-1}-1\right|-\left|\sqrt{x-1}+1\right|\)
\(\le\left|\sqrt{x-1}-1-\sqrt{x-1}-1\right|=2\)có GTLN là 2
B = \(l1-xl+lx+3l+lx+2l\ge l1-x+x+3l+lx+2l\)
\(=4+lx+2l\)
Vậy GTNn là 4 khi x = -2
a)
`4(x-2)^2 =4`
`<=>(x-2)^2 =1`
`<=>x-2=1` hoặc `x-2=-1`
`<=>x=3` hoặc `x=1`
b)
`5(x^2 -6x+9)=5`
`<=>(x-3)^2 =1`
`<=>x-3=1`hoặc `x-3=-1`
`<=>x=4` hoặc `x=2`
c)
`4x^2 +4x+1=0`
`<=>(2x+1)^2 =0`
`<=>2x+1=0`
`<=>x=-1/2`
d)
`9x^2 +6x+1=2`
`<=>(3x+1)^2 =2`
\(< =>\left[{}\begin{matrix}3x+1=\sqrt{2}\\3x+1=-\sqrt{2}\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=\dfrac{\sqrt{2}-1}{3}\\x=\dfrac{-\sqrt{2}-1}{3}\end{matrix}\right.\)
1: Ta có: \(A=\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\)
\(=\dfrac{2\sqrt{x}-9-\left(x-9\right)+\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{2\sqrt{x}-9-x+9+2x-4\sqrt{x}+\sqrt{x}-2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{x-\sqrt{x}-2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)
Để \(A=-\dfrac{1}{\sqrt{x}}\) thì \(x+\sqrt{x}=-\sqrt{x}+3\)
\(\Leftrightarrow x+2\sqrt{x}-3=0\)
\(\Leftrightarrow\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)=0\)
\(\Leftrightarrow x=1\left(nhận\right)\)
2: Để A nguyên thì \(\sqrt{x}+1⋮\sqrt{x}-3\)
\(\Leftrightarrow\sqrt{x}-3\in\left\{-1;1;2;-2;4;-4\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{2;4;5;1;7\right\}\)
\(\Leftrightarrow x\in\left\{16;25;1;49\right\}\)
\(H=\dfrac{x^2-6x+1}{x^2+1}=\dfrac{4x^2+4-3x^2-6x-3}{x^2+1}\)
\(=\dfrac{4\left(x^2+1\right)-3\left(x^2+2x+1\right)}{x^2+1}=4-\dfrac{3\left(x+1\right)^2}{x^2+1}\)
Ta có: \(\dfrac{3\left(x+1\right)^2}{x^2+1}\ge0\forall x\Rightarrow H=4-\dfrac{3\left(x+1\right)^2}{x^2+1}\le4\forall x\)
\(\Rightarrow H_{max}=4\Leftrightarrow x+1=0\Leftrightarrow x=-1\)
minA=0 do tổnngcác bình phương không âm
làm đi