Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(x^4\ge0\forall x\)và \(3\left|x\right|\ge0\forall x\)
\(\Rightarrow x^4+3\left|x\right|+2\ge2\forall x\)
hay \(A\ge2\)
Dấu "=" xảy ra <=> x = 0
Vậy, A min = 2 khi và chỉ khi x = 0
\(B=\left(x^4+5\right)^2\)
Có \(\left(x^4+5\right)^2\ge0\)
Dấu "=" xảy ra khi \(x^4=-5\)
Vậy Min B = 0 <=>
1) Vì \(\left|x\right|\ge0\left(\forall x\right)\Rightarrow3.\left|x\right|\ge0\Rightarrow A=3.\left|x\right|-2=3.\left|x\right|+\left(-2\right)\ge-2\)
Dấu bằng xảy ra khi: |x| = 0 <=> x = 0
Vậy Amin = -2 khi và chỉ khi x = 0
2) Vì \(\left|x-8\right|\ge0\left(\forall x\right)\Rightarrow B=\left|x-8\right|+\frac{3}{4}\ge\frac{3}{4}\)
Dấu "=" xảy ra <=> |x-8| = 0 <=>x - 8 = 0 <=> x = 8
Vậy Bmin = 3/4 khi và chỉ khi x = 8
3) Vì \(\left(x-6\right)^{10}\ge0\left(\forall x\right);\left|x-y\right|\ge0\left(\forall x;y\right)\)
\(\Rightarrow\left(x-6\right)^{10}+\left|x-y\right|+9\ge9\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-6\right)^{10}=0\\\left|x-y\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-6=0\\x-y=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=6\\x=y\end{cases}\Leftrightarrow}x=y=6}\)
Vậy GTNN của biểu thức = 9 khi và chỉ khi x = y = 6
B1 :a) <=> 3-2x-1=4-x+3
<=> 3-1-4-3=-x+2x
<=>x=-5
b) <=> 4x>16+5
<=>4x>21
<=>x>21/4
c) <=> -x<21-5
<=>-x<16
<=> x>16
B2 :
A =3(X-2)^2-5
Ta có (x-2)^2 > 0
=>3(x-2)^2 > 0
=> 3(x-2)2 -5 > -5
=> A > -5
=> Min A=-5 <=> x=2
Min=2 khi x=-3
TRả lời có cả cách làm hộ mình ạ