Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=\(\frac{2\left(x^2-8x+22\right)-1}{x^2-8x+22}\)=2-\(\frac{1}{x^2-8x+22}\)
ĐỂ A CÓ GTNH THÌ \(\frac{1}{x^2-8x+22}\)LỚN NHẤt thì x2-8x+22 nhỏ nhất
SUY RA X2-8X+22=x2-8x+16+6=(x-4)2+6>=6(do (x-4)2>=0)
GTNN CỦA x2-8x+22 là 6 khi và chỉ khi (x-4)2=0\(\Leftrightarrow\)x=4
vậy GTNN CỦA A=2-\(\frac{1}{6}\)=\(\frac{11}{6}\)TẠI X=4
B=1-\(\frac{4}{x}\)+\(\frac{1}{x^2}\)
Dặt \(\frac{1}{x}\)=t ta có
B=1-4t+t2=t2-4t+4-3=(t-2)2-3>=-3 dấu bằng xảy ra khi và chỉ khi (t-2)2=0\(\Leftrightarrow\)t=2
\(\Leftrightarrow\)\(\frac{1}{x}\)=2
\(\Leftrightarrow\)=\(\frac{1}{2}\)
vậy GTNN là -3 tại x=1/2
2,a, GTNN A=\(\frac{x^2-12x+36-x^2-9}{x^2+9}\)=\(\frac{\left(x-6\right)^2-\left(x^2+9\right)}{x^2+9}\)=\(\frac{\left(x-6\right)^2}{x^2+9}\)-1
do \(\frac{\left(x-6\right)^2}{x^2+9}\)\(\ge\)0 với mọi x \(\Rightarrow\)\(\frac{\left(x-6\right)^2}{x^2+9}\)-1\(\ge\)-1
dấu = xảy ra khi và chỉ khi (x-6)2\(\Leftrightarrow\)x=6
vậy GTNN của A=-1 tại x=6
B,GTNN B=\(\frac{4\left(x^2+2x+1\right)-4x^2-1}{4x^2+1}\)=\(\frac{4\left(x+1\right)^2}{4x^2+1}\)-1
DO \(\frac{4\left(x+1\right)^2}{4x^2+1}\)\(\ge\)0\(\Rightarrow\)\(\frac{4\left(x+1\right)^2}{4x^2+1}\)-1\(\ge\)-1
dấu =xảy ra khi và chỉ khi 4(x+1)2=0
\(\Leftrightarrow\)x=-1
vạy GTNN của B=-1 tại x=-1
C, GTLN C=\(\frac{-\left(x^2-2x+1\right)+x^2+2}{x^2+2}\)=2-\(\frac{\left(x-1\right)^2}{x^2+2}\)
DO \(\frac{\left(x-1\right)^2}{x^2+2}\)\(\ge\)0\(\Rightarrow\) 2- \(\frac{\left(x-1\right)^2}{x^2+2}\)\(\le\)2
dấu = xảy ra khi và chỉ khi (x-1)2=0\(\Leftrightarrow\)x=1
Vậy GTLN của c=2 tại x=1
Ta có : \(P=2x^2-8x+1=2\left(x^2-4x\right)+1=2\left(x^2-4x+4-4\right)+1=2\left(x-2\right)^2-7\)
Vì \(2\left(x-2\right)^2\ge0\forall x\)
Nên : \(P=2\left(x-2\right)^2-7\ge-7\forall x\in R\)
Vậy \(P_{min}=-7\) khi x = 2
1.a) Không tồn tại\(\)
b) 1997 tại x=4
c) 4 tại x=1;y=2
d) 164 tại x=8
2.a) x>3 và x<-1
b) Không tốn tại x
a)
\(B=\frac{x^2-4x+1}{x^2}=1-\frac{4}{x}+\frac{1}{x^2}\)
Đặt \(y=\frac{1}{x}\)
\(\Rightarrow B=1-4y+y^2=y^2-4y+4-3=\left(y-2\right)^2-3\ge-3\)
Dấu = xảy ra \(\Leftrightarrow y=2\Leftrightarrow\frac{1}{x}=2\Leftrightarrow x=\frac{1}{2}\)
Vậy GTNN của B là -3 <=> x=1/2
\(C=\frac{2x}{x^2+1}=\frac{x^2+1-x^2+2x-1}{x^2+1}=1-\frac{\left(x-1\right)^2}{x^2+1}\le1\)
Dấu bằng xảy ra <=> x=1
\(C=\frac{2x}{x^2+1}=\frac{x^2+2x+1-x^2-1}{x^2+1}=\frac{\left(x+1\right)^2}{x^2+1}-1\ge-1\)
Dấu bằng xảy ra <=> x=-1
Vậy maxC=1 <=>x=1
minC=-1 <=> x=-1
Ta có A= x^3 + 2x^2 + 5x + 10/ x^2 + 4x+4
A= x^2(x+2)+5(x+2)/ (x+2)^2
A= (x^2)(x^2+5)/ (x+2)(x+2)
A= x^2+5/ x+2
Để A= x^2+5/ x+2 bé nhất thì x^2+5 phải bé nhất
MÀ x^2 lớn hơn hoặc = 0 vs mọi x => x^2=0 => x^2 + 5 = 5 vs x=0
Thay x=0 vào A có 0^2 + 5/ 0+2 = 5/2
Vậy MinA=5/2 vs x=0
Áp dụng bất đẳng thức AM-GM ta có :
\(B=\frac{12}{x-1}+\frac{x-1+1}{3}=\frac{12}{x-1}+\frac{x-1}{3}+\frac{1}{3}\ge2\sqrt{\frac{12}{x-1}\cdot\frac{x-1}{3}}+\frac{1}{3}=4+\frac{1}{3}=\frac{13}{3}\)
Dấu "=" xảy ra <=> \(\frac{12}{x-1}=\frac{x-1}{3}\Rightarrow x=7\left(x\ge1\right)\). Vậy MinB = 13/3
a) \(B=\frac{3x^2+6x+10}{x^2+2x+5}\)
\(\Leftrightarrow B=3-\frac{5}{x^2+2x+5}\)
\(\Leftrightarrow B=3-\frac{5}{5\left(\frac{x^2}{5}+\frac{2x}{5}+\frac{5}{5}\right)}\Leftrightarrow B=3-\frac{1}{\frac{\left(x^2+2x+1\right)}{5}+\frac{4}{5}}\)( cho \(\left(x+1\right)^2=0\))
\(\Leftrightarrow maxB=3-\frac{1}{\frac{4}{5}}=\frac{7}{4}\) KHI X= -1
c) \(D=x^2-2x+y^2+4y+7\)
\(\Leftrightarrow D=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+2\)
\(\Leftrightarrow D=\left(x-1\right)^2+\left(y+2\right)^2+2\)
\(\Leftrightarrow minD=2\)KHI X= 1 và Y= -2
e) Câu này đề có vẻ sai bạn kiểm tra lại giúp mk ! mk làm theo đề đúng nka !
\(E=\frac{x^2-4x+1}{x^2}\)
\(\Leftrightarrow E=\frac{x^2\left(1-\frac{4}{x}+\frac{1}{x^2}\right)}{x^2}=1-\frac{4}{x}+\frac{1}{x^2}\)
ĐẶT \(y=\frac{1}{x}\)\(\Leftrightarrow minE=-3\)KHI X = 1/2
Hai câu còn lại tối mk giải tiếp mk bận đi học rùi bạn thông cảm
A=4x^2-2x+1/x^2
A=3x^2/x^2+x^2-2x+1/x^2
A=3+(x-1)^2/x^2> hoặc bằng 3
Min A=3 tại x=1