K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
14 tháng 8 2021

\(2x-3\sqrt{x}+2=2\left(\sqrt{x}-\dfrac{3}{4}\right)^2+\dfrac{7}{8}\ge\dfrac{7}{8}\)

\(\Rightarrow\dfrac{1}{2x-3\sqrt{x}+2}\le\dfrac{1}{\dfrac{7}{8}}=\dfrac{8}{7}\)

\(\Rightarrow\dfrac{-1}{2x-3\sqrt{x}+2}\ge-\dfrac{8}{7}\)

\(A_{min}=-\dfrac{8}{7}\) khi \(x=\dfrac{9}{16}\)

Ta thấy:\(2x-3\sqrt{x}+2=2\left(x-\dfrac{3}{2}\sqrt{x}+1\right)\)\(=2\left(x-2.\dfrac{3}{4}\sqrt{x}+\dfrac{9}{16}+\dfrac{7}{16}\right)=2\left(\sqrt{x}-\dfrac{3}{4}\right)^2+\dfrac{7}{8}\)

Vì \(2\left(\sqrt{x}-\dfrac{3}{4}\right)^2\ge0\) với \(\forall x\ge0\) nên \(2\left(\sqrt{x}-\dfrac{3}{4}\right)^2+\dfrac{7}{8}\ge\dfrac{7}{8}\)với \(\forall x\ge0\) 

\(\Rightarrow\dfrac{1}{2x-3\sqrt{x}+2}\le\dfrac{7}{8}\)với \(\forall x\ge0\) 

\(\Rightarrow A=\dfrac{-1}{2x-3\sqrt{x}+2}\ge-\dfrac{7}{8}\)với \(\forall x\ge0\) 

Dấu "=" xảy ra khi và chỉ khi \(\sqrt{x}-\dfrac{3}{4}=0\Leftrightarrow\sqrt{x}=\dfrac{3}{4}\Leftrightarrow x=\dfrac{9}{16}\) 

xin lỗi nha bài này tui gửi nhầm lên đây nên đừng nói tui tự làm tự giải kiếm điểm nhá

AH
Akai Haruma
Giáo viên
4 tháng 7 2021

$A=2x-\sqrt{x}=2(x-\frac{1}{2}\sqrt{x}+\frac{1}{4^2})-\frac{1}{8}$

$=2(\sqrt{x}-\frac{1}{4})^2-\frac{1}{8}$

$\geq \frac{-1}{8}$

Vậy $A_{\min}=-\frac{1}{8}$. Giá trị này đạt tại $x=\frac{1}{16}$

 

AH
Akai Haruma
Giáo viên
4 tháng 7 2021

$B=x+\sqrt{x}$

Vì $x\geq 0$ nên $B\geq 0+\sqrt{0}=0$

Vậy $B_{\min}=0$. Giá trị này đạt tại $x=0$

 

NV
8 tháng 8 2021

a.

\(2x-x^2+7=-\left(x^2-2x+1\right)+8=-\left(x-1\right)^2+8\le8\)

\(\Rightarrow2+\sqrt{2x-x^2+7}\le2+\sqrt{8}=2+2\sqrt{2}\)

\(\Rightarrow\dfrac{3}{2+\sqrt{2x-x^2+7}}\ge\dfrac{3}{2+2\sqrt{2}}=\dfrac{3\sqrt{2}-3}{2}\)

\(A_{min}=\dfrac{3\sqrt{2}-3}{2}\) khi \(x=1\)

b. ĐKXĐ: \(x\le1\)

\(B=-\left(1-x-\sqrt{2\left(1-x\right)}+\dfrac{1}{2}-\dfrac{1}{2}-1\right)\)

\(B=-\left(1-x-\sqrt{2\left(1-x\right)}+\dfrac{1}{2}\right)+\dfrac{3}{2}\)

\(B=-\left(\sqrt{1-x}-\dfrac{\sqrt{2}}{2}\right)^2+\dfrac{3}{2}\le\dfrac{3}{2}\)

\(B_{max}=\dfrac{3}{2}\) khi\(x=\dfrac{1}{2}\)

8 tháng 8 2021

dạ em cảm ơn anh ạ 

a: Ta có: \(A=\dfrac{x\sqrt{x}-3}{x-2\sqrt{x}-3}-\dfrac{2\left(\sqrt{x}-3\right)}{\sqrt{x}+1}+\dfrac{\sqrt{x}+3}{3-\sqrt{x}}\)

\(=\dfrac{x\sqrt{x}-3-2\left(x-6\sqrt{x}+9\right)-x-4\sqrt{x}-3}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{x\sqrt{x}-x-4\sqrt{x}-6-2x+12\sqrt{x}-18}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{x\sqrt{x}-3x+8\sqrt{x}-24}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{x\left(\sqrt{x}-3\right)+8\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{x+8}{\sqrt{x}+1}\)

 

AH
Akai Haruma
Giáo viên
6 tháng 8 2021

Lời giải:
ĐKXĐ: $x\geq 0; x\neq 9$

a. \(A=\frac{x\sqrt{x}-3}{(\sqrt{x}+1)(\sqrt{x}-3)}-\frac{2(\sqrt{x}-3)^2}{(\sqrt{x}+1)(\sqrt{x}-3)}-\frac{(\sqrt{x}+3)(\sqrt{x}+1)}{(\sqrt{x}+1)(\sqrt{x}-3)}\)

\(=\frac{x\sqrt{x}-3x+8\sqrt{x}-24}{(\sqrt{x}+1)(\sqrt{x}-3)}=\frac{(\sqrt{x}-3)(x+8)}{(\sqrt{x}+1)(\sqrt{x}-3)}=\frac{x+8}{\sqrt{x}+1}\)

b.

\(14-6\sqrt{5}=(3-\sqrt{5})^2\Rightarrow \sqrt{x}=3-\sqrt{5}\)

\(A=\frac{14-6\sqrt{5}+8}{3-\sqrt{5}+1}=\frac{22-6\sqrt{5}}{4-\sqrt{5}}=\frac{58-2\sqrt{5}}{11}\)

c. 

Áp dụng BĐT Cô-si:
$x+4\geq 4\sqrt{x}\Rightarrow x+8\geq 4(\sqrt{x}+1)$

$\Rightarrow A=\frac{x+8}{\sqrt{x}+1}\geq 4$

Vậy $A_{\min}=4$. Giá trị này đạt tại $x=4$

23 tháng 1 2021

1) Áp dụng bất đẳng thức AM - GM và bất đẳng thức Schwarz:

\(P=\dfrac{1}{a}+\dfrac{1}{\sqrt{ab}}\ge\dfrac{1}{a}+\dfrac{1}{\dfrac{a+b}{2}}\ge\dfrac{4}{a+\dfrac{a+b}{2}}=\dfrac{8}{3a+b}\ge8\).

Đẳng thức xảy ra khi a = b = \(\dfrac{1}{4}\).

NV
23 tháng 1 2021

2.

\(4=a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\Rightarrow a+b\le2\sqrt{2}\)

Đồng thời \(\left(a+b\right)^2\ge a^2+b^2\Rightarrow a+b\ge2\)

\(M\le\dfrac{\left(a+b\right)^2}{4\left(a+b+2\right)}=\dfrac{x^2}{4\left(x+2\right)}\) (với \(x=a+b\Rightarrow2\le x\le2\sqrt{2}\) )

\(M\le\dfrac{x^2}{4\left(x+2\right)}-\sqrt{2}+1+\sqrt{2}-1\)

\(M\le\dfrac{\left(2\sqrt{2}-x\right)\left(x+4-2\sqrt{2}\right)}{4\left(x+2\right)}+\sqrt{2}-1\le\sqrt{2}-1\)

Dấu "=" xảy ra khi \(x=2\sqrt{2}\) hay \(a=b=\sqrt{2}\)

3. Chia 2 vế giả thiết cho \(x^2y^2\)

\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\ge\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\)

\(\Rightarrow0\le\dfrac{1}{x}+\dfrac{1}{y}\le4\)

\(A=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\right)=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\le16\)

Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)

31 tháng 10 2021

\(a,=\dfrac{2x+6\sqrt{x}+x-3\sqrt{x}-3x-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\dfrac{2\sqrt{x}-2-\sqrt{x}-3}{\sqrt{x}+3}\\ =\dfrac{3\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}+3}{\sqrt{x}-5}\\ =\dfrac{3\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-5\right)\left(\sqrt{x}-3\right)}\)

31 tháng 10 2021

a: \(=\dfrac{2x+6\sqrt{x}+x-3\sqrt{x}-3x-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\dfrac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}+3}\)

\(=\dfrac{3\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\sqrt{x}+3}{\sqrt{x}+1}\)

\(=\dfrac{3\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}\)

 

1: Ta có: \(A=\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\)

\(=\dfrac{2\sqrt{x}-9-\left(x-9\right)+\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{2\sqrt{x}-9-x+9+2x-4\sqrt{x}+\sqrt{x}-2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{x-\sqrt{x}-2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)

Để \(A=-\dfrac{1}{\sqrt{x}}\) thì \(x+\sqrt{x}=-\sqrt{x}+3\)

\(\Leftrightarrow x+2\sqrt{x}-3=0\)

\(\Leftrightarrow\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)=0\)

\(\Leftrightarrow x=1\left(nhận\right)\)

2: Để A nguyên thì \(\sqrt{x}+1⋮\sqrt{x}-3\)

\(\Leftrightarrow\sqrt{x}-3\in\left\{-1;1;2;-2;4;-4\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{2;4;5;1;7\right\}\)

\(\Leftrightarrow x\in\left\{16;25;1;49\right\}\)