Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(10x^2\) \(+y^2\) \(+4z^2+6x-4y-4xz+5=0\)
\(\Leftrightarrow\left(9x^2-6x+1\right)+\left(x^2-2.x.2z+4z^2\right)\) \(+\left(y^2-4y+4\right)=0\)
\(\Leftrightarrow\)\(\left(3x-1\right)^2\) \(+\left(x-2z\right)^2\) \(+\left(y-2\right)^2=0\)
Có \(\left(3x-1\right)^2\ge0\forall x\)
\(\left(x-2z\right)^2\ge0\forall x,z\)
\(\left(y-2\right)^2\) \(\ge0\forall y\)
\(\Rightarrow\) \(\left(3x-1\right)^2\) \(+\left(x-2z\right)^2+\left(y-2\right)^2\ge0\forall x,y,z\)
Dấu = xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}3x-1=0\\x-2z=0\\y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{3}\\z=\frac{1}{6}\\y=2\end{cases}}\)
KL
a, B=x2+4xy+y2+x2-8x+16+2012
B=(x+y) 2+(x-4)2+2012
Vậy B >=2012 ( Dấu "=" xảy ra khi x=4,y=-4)
b làm tương tự
c, 9x2+6x+1+y2-4y+4+x2-4xz+4z2=0
(3x+1)2+(y-4)2+(x-2z)2=0
Vậy 3x+1=0 => x = -1/3
y-4=0 => y=4
x-2z=0 thế x=-1/3 ta được. -1/3-2z=0 => z = -1/6
Bạn nhớ ghi lại đề minh không ghi đề
a) \(B=2x^2+y^2+2xy-8x+2028\)
\(=\left(x^2+2xy+y^2\right)+\left(x^2-8x+4^2\right)+2012=\left(x+y\right)^2+\left(x-4\right)^2+2012\ge2012\)
\(MinB=2012\Leftrightarrow\hept{\begin{cases}x=4\\y=-4\end{cases}}\)
b)\(C=x^2+5y^2+4xy+2x+2y-7\)
\(=\left(x^2+4xy+4y^2\right)+\left(2x+4y\right)+1+\left(y^2-2y+1\right)-9\)
\(=\left(\left(x+2y\right)^2+2\left(x+2y\right)+1\right)+\left(y-1\right)^2-9=\left(x+2y+1\right)^2+\left(y-1\right)^2-9\ge9\)
\(MinC=-9\Leftrightarrow\hept{\begin{cases}x+2y+1=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)
c)\(10x^2+y^2+4z^2+6x-4y-4xz+5=0\)
\(\Leftrightarrow\left(9x^2+6x+1\right)+\left(y^2-4y+4\right)+\left(x^2-4xz+4z^2\right)=0\)
\(\Leftrightarrow\left(3x+1\right)^2+\left(y-2\right)^2+\left(x-2z\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}3x+1=0\\y-2=0\\x-2z=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{1}{3}\\y=2\\z=-\frac{1}{6}\end{cases}}\)
a, \(2x^2-4xy+4y^2-6x\)
\(=x^2-2xy-2xy+4y^2+x^2-3x-3x+9-9\)
\(=\left(x-2y\right)^2+\left(x-3\right)^2-9\)
Với mọi giá trị của \(x;y\in R\) ta có:
\(\left(x-2y\right)^2+\left(x-3\right)^2-9\ge-9\)
Để \(\left(x-2y\right)^2+\left(x-3\right)^2-9=-9\) thì
\(\left\{{}\begin{matrix}\left(x-2y\right)^2=0\\\left(x-3\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3-2y=0\\x=3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y=1,5\\x=3\end{matrix}\right.\)
Vậy..............
b, \(z^2-4zt+5t^2-2t+13\)
\(=z^2-2zt-2zt+4t^2+t^2-t-t+1+12\)
\(=\left(z-2t\right)^2+\left(t-1\right)^2+12\)
Với mọi giá trị của \(z;t\in R\) ta có:
\(\left(z-2t\right)^2+\left(t-1\right)^2+12\ge12\)
Để \(\left(z-2t\right)^2+\left(t-1\right)^2+12=12\) thì
\(\left\{{}\begin{matrix}\left(z-2t\right)^2=0\\\left(t-1\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}z-2=0\\t=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}z=2\\t=1\end{matrix}\right.\)
Vậy...............
Câu c tường tự !!!
a,Đặt A= \(2x^2-4xy+4y^2-6x\)
\(=\left(2x^2-4xy-6x\right)+4y^2\)
\(=2\left(x^2-2xy-3x\right)+4y^2\)
\(=2\left[x^2-2x\left(y+\dfrac{3}{2}\right)+\left(y+\dfrac{3}{2}\right)^2\right]+4y^2-\left(y+\dfrac{3}{2}\right)^2\)
\(=2\left(x-y-\dfrac{3}{2}\right)^2+4y^2-y^2-3y-\dfrac{9}{4}\)
\(=2\left(x-y-\dfrac{3}{2}\right)^2+3\left(y^2-y+\dfrac{1}{4}\right)-3\)
\(=2\left(x-y-\dfrac{3}{2}\right)^2+3\left(y-\dfrac{1}{2}\right)^2-3\)
Với mọi giá trị của x;y ta có:
\(\left(x-y-\dfrac{3}{2}\right)^2\ge0;\left(y-\dfrac{1}{2}\right)^2\ge0\)
\(\Rightarrow2\left(x-y-\dfrac{3}{2}\right)^2+\left(y-\dfrac{1}{2}\right)^2-3\ge-3\)
Vậy Min A = -3 khi \(\left\{{}\begin{matrix}x-y-\dfrac{3}{2}=0\\y-\dfrac{1}{2}=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x-\dfrac{1}{2}-\dfrac{3}{2}=0\\y=\dfrac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x-2=0\\y=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=\dfrac{1}{2}\end{matrix}\right.\)
b, Đặt B = \(z^2-4zt+5t^2-2t+13\)
\(=\left(z^2-4zt+4t^2\right)+\left(t^2-2t+1\right)+12\)
\(=\left(z-2t\right)^2+\left(t-1\right)^2+12\)
Với mọi giá trị của z;t ta có:
\(\left(z-2t\right)^2\ge0;\left(t-1\right)^2\ge0\)
\(\Rightarrow\left(z-2t\right)^2+\left(t-1\right)^2+12\ge12\)
Vậy Min B = 12 khi \(\left\{{}\begin{matrix}z-2t=0\\t-1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}z-2=0\\t=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}z=2\\t=1\end{matrix}\right.\)
c, Đặt C = \(16x^2-8x+y^2-2y\)
\(=\left(16x^2-8x+1\right)+\left(y^2-2y+1\right)-2\)
\(=\left(4x-1\right)^2+\left(y-1\right)^2-2\)
Với mọi giá trị x;y ta có:
\(\left(4x-1\right)^2\ge0;\left(y-1\right)^2\ge0\)
\(\Rightarrow\left(4x-1\right)^2+\left(y-1\right)^2-2\ge-2\)
Vậy Min C = -2 khi \(\left\{{}\begin{matrix}4x-1=0\\y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x=1\\y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{4}\\y=1\end{matrix}\right.\)
Bài 1a/
\(\frac{1}{1+x+xy}=\frac{xyz}{xyz+x+xy}=\frac{yz}{1+y+yz}\)
\(\frac{1}{1+z+xz}=\frac{y}{y+yz+xyz}=\frac{y}{1+y+yz}\)
Vậy \(M=\frac{1}{1+y+yz}+\frac{y}{1+y+yz}+\frac{yz}{1+y+yz}=1\)
Chiều về làm tiếp
Bài 1b:Lời giải này chủ yếu nhờ dự đoán trước Min là 2011/2012 đạt được khi x=2012
Ta có \(P=\frac{2012x^2-2.2012x+2012^2}{2012x^2}=\frac{\left(x-2012\right)^2+2011x^2}{2012x^2}\ge\frac{2011x^2}{2012x^2}=\frac{2011}{2012}\)
Bài 2: Dùng phân tích thành bình phương
\(10x^2+y^2+4z^2+6x-4y-4xz+5=\left(9x^2+6x+1\right)+\left(y^2-4y+4\right)+\left(x^2-4xz+4z^2\right)\)
\(=\left(3x+1\right)^2+\left(y-2\right)^2+\left(x-2z\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}3x+1=0\\y-2=0\\x-2z=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{-1}{3}\\y=2\\z=-\frac{1}{6}\end{cases}}}\)
Bài 3:
a/\(pt\Leftrightarrow\left(x+6\right)\left(x-5\right)\left(x^2-x+1\right)=0\Leftrightarrow x=-6,x=5\)
b/ta phân tích vế trái thành:\(\left(3x-3\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\Rightarrow\hept{\begin{cases}x=1\\y=3\\z=-1\end{cases}}\)
a)\(x^2+10x+25-y^2\)
\(=\left(x+5\right)^2-y^2\)
\(=\left(x+5+y\right)\left(x+5-y\right)\)
b)\(5x^3-7x^2+10x-14\)
\(=x^2\left(5x-7\right)+2\left(5x-7\right)\)
\(=\left(x^2+2\right)\left(5x-7\right)\)
c)\(-5y^2+30y-45\)
\(=-5\left(y^2-6y+9\right)\)
\(=-5\left(y-3\right)^2\)
e)\(4xy^2-8xyz+4xz^2\)
\(=4x\left(y^2-2yz+z^2\right)\)
\(=4x\left(y-z\right)^2\)
f)\(x^2+7x+10\)
\(=x^2+5x+2x+10\)
\(=x\left(x+5\right)+2\left(x+5\right)\)
\(=\left(x+2\right)\left(x+5\right)\)
k)\(2x^7+6x^6+6x^5-2x^4\)
\(=2x^4\left(x^3+3x^2+3x-1\right)\)
a)\(x^2+10x+25-y^2\)
\(=\left(x+5\right)^2-y^2\)
\(=\left(x+5-y\right)\left(x+5+y\right)\)
b)\(5x^3-7x^2+10x-14\)
\(=x^2\left(5x-7\right)+2\left(5x-7\right)\)
\(=\left(5x-7\right)\left(x^2+2\right)\)
c)\(-5y^2+30y-45\)
\(=-5\left(y^2-6y+9\right)\)
\(=-5\left(y-3\right)^2\)
e)\(4xy^2-8xyz+4xz^2\)
\(=4x\left(y^2-2yz+z^2\right)\)
\(=4x\left(y-z\right)^2\)
f)\(x^2+7x+10\)
\(=x^2+5x+2x+10\)
\(=x\left(x+5\right)+2\left(x+5\right)\)
k)\(2x^7+6x^6+6x^5-2x^4\)
\(=2x^4\left(x^3+3x^2+3x-1\right)\)
\(=\left(x+2\right)\left(x+5\right)\)
a) \(5x^2-12xy+9y^2-4x+4=\left(4x^2-12xy+9y^2\right)+x^2-4x+4=\left(2x-3y\right)^2+\left(x-2\right)^2\ge0\)
b) \(-x^2-2y^2+12x-4y+7=-\left(x^2-12x+36\right)-2\left(y^2+2y+1\right)+45=-\left(x-6\right)^2-2\left(y+1\right)^2+45\le45\)
c)\(4y^2+10x^2+12xy+6x+7=\left(4y^2+12xy+9x^2\right)+x^2+6x+9-2=\left(2y+3x\right)^2+\left(x+3\right)^2-2\ge-2\)
d) \(3-10x^2-4xy-4y^2=3-\left(4y^2+4xy+x^2\right)-9x^2=-\left(2y+x\right)^2-9x^2+3\le3\)
e)\(x^2-5x+y^2-xy-4y+16=\left(\frac{1}{2}x^2-xy+\frac{1}{2}y^2\right)+\frac{1}{2}\left(x^2-10x+25\right)+\frac{1}{2}\left(y^2-8y+16\right)-\frac{9}{2}=\frac{1}{2}\left(x-y\right)^2+\frac{1}{2}\left(x-5\right)^2+\frac{1}{2}\left(y-4\right)^2-\frac{9}{2}\ge-\frac{9}{2}\)Phần e) mới nghĩ đk v, tui biết đáp án sao do k xảy ra dấu bằng
A = 10x2 + y2 + 4z2 + 6x - 4y - 4xz + 2024
= ( x2 - 4xz + 4z2 ) + ( 9x2 + 6x + 1 ) + ( y2 - 4y + 4 ) + 2019
= ( x - 2z )2 + ( 3x + 1 )2 + ( y - 2 )2 + 2019 ≥ 2019 ∀ x, y, z
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-2z=0\\3x+1=0\\y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{1}{3}\\y=2\\z=-\frac{1}{6}\end{cases}}\)
=> MinA = 2019 <=> \(\hept{\begin{cases}x=-\frac{1}{3}\\y=2\\z=-\frac{1}{6}\end{cases}}\)