Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x^2-6x-4=x^2-6x+9-13=\left(x-3\right)^2-13\ge-13\)
Vậy \(A_{min}=-13\Leftrightarrow x=3\)
\(B=x^2-x+1=x^2-2.\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Vậy \(B_{min}=\frac{3}{4}\Leftrightarrow x=\frac{1}{2}\)
Ít thôi -..-
a) ( 3x + 2 )( 2x + 9 ) - ( x + 3 )( 6x + 1 ) = ( x + 1 )2 - ( x + 2 )( x - 2 )
<=> 6x2 + 31x + 18 - ( 6x2 + 19x + 3 ) = x2 + 2x + 1 - ( x2 - 4 )
<=> 6x2 + 31x + 18 - 6x2 - 19x - 3 = x2 + 2x + 1 - x2 + 4
<=> 12x + 15 = 2x + 5
<=> 12x - 2x = 5 - 15
<=> 10x = -10
<=> x = -1
b) ( 2x + 3 )( x - 4 ) + ( x - 5 )( x - 2 ) = ( 3x - 5 )( x - 4 )
<=> 2x2 - 5x - 12 + x2 - 7x + 10 = 3x2 - 17x + 20
<=> 3x2 - 12x - 2 = 3x2 - 17x + 20
<=> 3x2 - 12x - 3x2 + 17x = 20 + 2
<=> 5x = 22
<=> x = 22/5
c) ( x + 2 )3 - ( x - 2 )3 - 12x( x - 1 ) = -8
<=> x3 + 6x2 + 12x + 8 - ( x3 - 6x2 + 12x - 8 ) - 12x2 + 12x = -8
<=> x3 + 6x2 + 12x + 8 - x3 + 6x2 - 12x + 8 - 12x2 + 12x = -8
<=> 12x + 16 = -8
<=> 12x = -24
<=> x = -2
d) ( 3x - 1 )2 - 5( x + 1 ) + 6x - 3.2x + 1 - ( x - 1 )2 = 16
<=> 9x2 - 6x + 1 - 5x - 5 + 6x - 6x + 1 - ( x2 - 2x + 1 ) = 16
<=> 9x2 - 11x - 3 - x2 + 2x - 1 = 16
<=> 8x2 - 9x - 4 = 16
<=> 8x2 - 9x - 4 - 16 = 0
<=> 8x2 - 9x - 20 = 0
( Đến đây bạn có hai sự lựa chọn : 1 là vô nghiệm
2 là nghiệm vô tỉ =) )
a) (3x + 2)(2x + 9) - (x + 3)(6x + 1) = (x + 1)2 - (x + 2)(x - 2)
=> 3x(2x + 9) + 2(2x + 9) - x(6x + 1) - 3(6x + 1) = x2 + 2x + 1 - x(x - 2) - 2(x - 2)
=> 6x2 + 27x + 4x + 18 - 6x2 - x - 18x - 3 = x2 + 2x + 1 - x2 + 2x - 2x + 4
=> (6x2 - 6x2) + (27x + 4x - x - 18x) + (18 - 3) = (x2 - x2) + (2x + 2x - 2x) + (1 + 4)
=> 12x + 15 = 2x + 5
=> 12x + 15 - 2x - 5 = 0
=> 10x + 10 = 0
=> 10x = -10 => x = -1
b) (2x + 3)(x - 4) + (x - 5)(x - 2) = (3x - 5)(x - 4)
=> 2x(x - 4) + 3(x - 4) + x(x - 2) - 5(x - 2) = 3x(x - 4) - 5(x - 4)
=> 2x2 - 8x + 3x - 12 + x2 - 2x - 5x + 10 = 3x2 - 12x - 5x + 20
=> (2x2 + x2) + (-8x + 3x - 2x - 5x) + (-12 + 10) = 3x2 - 17x + 20
=> 3x2 - 12x - 2 = 3x2 - 17x + 20
=> 3x2 - 12x - 2 - 3x2 + 17x - 20 = 0
=> (3x2 - 3x2) + (-12x + 17x) + (-2 - 20) = 0
=> 5x - 22 = 0
=> 5x = 22 => x = 22/5
c) (x + 2)3 - (x - 2)3 - 12x(x - 1) = -8
=> x3 + 6x2 + 12x + 8 - (x3 - 6x2 + 12x - 8) - 12x2 + 12x = -8
=> x3 + 6x2 + 12x + 8 -x3 + 6x2 - 12x + 8 - 12x2 + 12x = -8
=> (x3 - x3) + (6x2 + 6x2 - 12x2) + (12x - 12x + 12x) + (8 + 8) = -8
=> 12x + 16 = -8
=> 12x = -24
=> x = -2
Còn bài cuối làm nốt
a, A = x2 + 6x + 13
=(x2+6x+9)+4
=(x+3)2+4\(\ge\)4
Dấu "=" xảy ra khi x=-3
\(A=x^2+6x+13\)
<=>\(A=x^2+6x+9+4\)
<=>\(A=\left(x+3\right)^2+4\ge4\)
Dấu "=" xảy ra <=> x+3=0 <=> x=-3
Vậy minA=4 <=> x=-3
\(B=4x^2+3x+11\)
<=>\(B=4\left(x^2+\frac{3}{4}x-\frac{11}{4}\right)\)
<=>\(B=4\left(x^2+\frac{3}{4}x+\frac{3}{8}\right)-\frac{185}{16}\)
<=>\(B=4\left(x+\frac{3}{8}\right)^2-\frac{185}{16}\ge-\frac{185}{16}\)
Dấu "=" xảy ra <=> x+3/8=0 <=> x=-3/8
Vậy minB=-185/16 <=> x=-3/8
\(C=5x^2-x+34\)
<=>\(C=5\left(x^2-\frac{1}{5}x+\frac{34}{5}\right)\)
<=>\(C=5\left(x^2-\frac{1}{5}x+\frac{1}{100}\right)+\frac{679}{20}\)
<=>\(C=\left(x-\frac{1}{10}\right)^2+\frac{679}{20}\ge\frac{679}{20}\)
Dấu "=" xảy ra <=> x-1/10=0 <=> x=1/10
Vậy minC= 679/20 <=> x=1/10
Bài 1
a) (x5 + 4x3 - 6x2) : 4x2
= 4x2(\(\dfrac{1}{4}\)x3 + x - \(\dfrac{3}{2}\)) : 4x2
= \(\dfrac{1}{4}\)x3 + x - \(\dfrac{3}{2}\)
b) (x3 - 8) : (x2 + 2x + 4)
= (x - 2)(x2 + 2x + 4) : (x2 + 2x + 4)
= x - 2
c) (3x2 - 6x) : (2 - x)
= -(6x - 3x2) : (2 - x)
= -3x(2 - x) : (2 - x)
= -3x
d) (x3 + 2x2 - 2x - 1) : (x2 + 3x + 1)
= [(x3 - 1) + (2x2 - 2x)] : (x2 + 3x + 1)
= [(x - 1)(x2 + x + 1) + 2x(x - 1)] : (x2 + 3x + 1)
= (x - 1)(x2 + x + 1 + 2x) : (x2 + 3x + 1)
= (x - 1)(x2 + 3x + 1) : (x2 + 3x + 1)
= x - 1
Bài 2
a) (x - 4)2 - (x - 2)(x + 2) = 6
x2 - 8x + 16 - (x2 - 4) = 6
x2 - 8x + 16 - x2 + 4 = 6
-8x + 20 = 6
\(\Rightarrow\) -8x = - 14
\(\Rightarrow\) x = \(\dfrac{7}{4}\)
b) 9(x + 1)2 - (3x - 2)(3x + 2) = 10
9(x2 + 2x + 1) - (9x2 - 4) = 10
9x2 + 18x + 9 - 9x2 + 4 = 10
18x + 13 = 10
\(\Rightarrow\) 18x = -3
\(\Rightarrow\) x = \(\dfrac{-1}{6}\)
Nhớ tik mik nha
không lần sau mik ko giúp đâu
AK... có j ko hiểu thì bn cứ bình luận bên dưới
a) 3x( 2x + 3) -(2x+5)(3x-2)=8
<=> 6x^2+9x-6x^2+4x-15x+10=8
<=> -2x+10=8
<=> -2x= 8-10 = -2
<=> x=1
b) (3x-4)(2x+1)-(6x+5)(x-3)=3
<=> 6x^2+3x-8x-4-6x^2+18x-5x+15=3
<=> -8x+11=3
<=> -8x= -8
<=> x=1
c, 2(3x-1)(2x+5)-6(2x-1)(x+2)=-6
<=> 2(6x^2+15x-2x-5)-6(2x^2+4x-x-2)=6
<=> 2(6x^2+13x-5)-6(2x^2+3x-2)=6
<=> 12x^2+ 26x-10-12x^2-18x+12=6
<=> 8x+2=6
<=> 8x=4
<=> x= 1/2
d, 3xy(x+y)-(x+y)(x^2 +y^2+2xy)+y^3=27
<=> 3x2y+3xy2-(x+y)(x+y)2+y3=27
<=> 3x2y+3xy2-(x+y)3+y3=27
<=> 3x2y +3xy2 -x3-3x2y-3xy2-y3+y3=27
<=> -x3=27
<=> x= \(-\sqrt[3]{27}\)= -3
\(A=x^2+6x+5=\left(x^2+6x+9\right)-4=\left(x+3\right)^2-4\ge-4\)
Vậy \(MIN_A=-4\) khi \(\left(x+3\right)^2=0\Leftrightarrow x=-3\)
\(B=\left(x-1\right)\left(x-3\right)=x^2-4x+3=\left(x^2-4x+4\right)-1=\left(x-2\right)^2-1\ge-1\)
Vậy \(MIN_B=-1\) khi \(\left(x-2\right)^2=0\Leftrightarrow x=2\)
\(C=x^2-x+8=\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{31}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{31}{4}\ge\dfrac{31}{4}\)
Vậy \(MIN_C=\dfrac{31}{4}\) khi \(\left(x-\dfrac{1}{2}\right)^2=0\Leftrightarrow x=\dfrac{1}{2}\)
\(D=x^2-3x=\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{9}{4}=\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{4}\ge-\dfrac{9}{4}\)
Vậy \(MIN_D=-\dfrac{9}{4}\) khi \(\left(x-\dfrac{1}{2}\right)^2=0\Leftrightarrow x=\dfrac{1}{2}\)