\(A=9x^2-6x+5\) \(B=2x^2+2xy+y^2-2...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2016

cần cách làm ko nhỉ, mình ra kết quả sau khi đọc xông cái đề rồi

câu a là 4 nhá

câu b sai đề nhá bạn phải là 2y^2 chứ nhỉ?????

vậy nhở nhất là 0 nhỉ, nếu sửa đề đúng

10 tháng 1 2017

a)Min=-3 khi x=2 và y=-3

b)Min=7/2 khi x=1/2 và y=-1

11 tháng 1 2017

A có thể giải rõ giúp e dc k

22 tháng 11 2016

a)\(M=x^2-2xy+2y^2-4y+2016\)

\(=\left(x^2-2xy+y^2\right)+\left(y^2-4y+4\right)+2012\)

\(=\left(x-y\right)^2+\left(y-2\right)^2+2012\ge2012\)

Dấu = khi \(\begin{cases}\left(x-y\right)^2=0\\\left(y-2\right)^2=0\end{cases}\)\(\Leftrightarrow\begin{cases}x-y=0\\y-2=0\end{cases}\)

\(\Leftrightarrow\begin{cases}x=y\\y=2\end{cases}\)\(\Leftrightarrow x=y=2\)

Vậy MinM=2012 khi x=y=2

b)\(N=x^2-2xy+2x+2y^2-4y+2016\)

\(=\left(x^2-2xy+2x+y^2-2y+1\right)+\left(y^2-2y+1\right)+2014\)

\(=\left(x-y+1\right)^2+\left(y-1\right)^2+2014\ge2014\)

Dấu = khi \(\begin{cases}\left(x-y+1\right)^2=0\\\left(y-1\right)^2=0\end{cases}\)\(\Leftrightarrow\begin{cases}x-y+1=0\\y-1=0\end{cases}\)

\(\Leftrightarrow\begin{cases}x-y+1=0\\y=1\end{cases}\)\(\Leftrightarrow\begin{cases}x-1+1=0\\y=1\end{cases}\)\(\Leftrightarrow\begin{cases}x=0\\y=1\end{cases}\)

Vậy MinN=2014 khi x=0;y=1

 

 

24 tháng 5 2017

a)\(\frac{x^2+y^2-1+2xy}{x^2-y^2+1+2x}\)

\(\Leftrightarrow\frac{\left(x+y\right)^2-1}{\left(x+1\right)^2-y^2}\)

\(\Leftrightarrow\frac{\left(x+y+1\right)\left(x+y-1\right)}{\left(x+1-y\right)\left(x+1+y\right)}\)

\(\Leftrightarrow\frac{x+y-1}{x-y+1}\)

b)\(\frac{3x^3-6x^2y+xy^2-2y^3}{9x^5-18x^4y-xy^4+2y^5}\)

\(\Leftrightarrow\frac{3x^2\left(x-2y\right)+y^2\left(x-2y\right)}{9x^4\left(x-2y\right)-y^4\left(x-2y\right)}\)

\(\Leftrightarrow\frac{\left(3x^2+y^2\right)\left(x-2y\right)}{\left(9x^4-y^4\right)\left(x-2y\right)}\)

\(\Leftrightarrow\frac{3x^2+y^2}{\left(3x^2-y^2\right)\left(3x^2+y^2\right)}\)

\(\Leftrightarrow\frac{1}{3x^2-y^2}\)

AH
Akai Haruma
Giáo viên
6 tháng 8 2017

1. \(x^3-x^2+x-1=(x^3-x^2)+(x-1)\)

\(=x^2(x-1)+(x-1)=(x^2+1)(x-1)\)

2. \(6x^2y-2xy^2+3x-y=2xy(3x-y)+(3x-y)\)

\(=(3x-y)(2xy+1)\)

3. \(4x^2+1\) thì còn cái gì để phân tích hả bạn? Hay ý bạn là \(4x^4+1\)?

\(4x^4+1=(2x^2)^2+1=(2x^2)^2+1+4x^2-4x^2\)

\(=(2x^2+1)^2-(2x)^2=(2x^2+1-2x)(2x^2+1+2x)\)

4. \(x^2-9x+8=(x^2-x)-(8x-8)\)

\(=x(x-1)-8(x-1)=(x-1)(x-8)\)

5. \(x^3-2x^2y+3xy^2=x(x^2-2xy+3y^2)\)

6. \(x^2-6x+y-y^2\) (sai đề)

7. \(x^2-xy-2x+2y=(x^2-xy)-(2x-2y)\)

\(=x(x-y)-2(x-y)=(x-y)(x-2)\)

4 tháng 8 2018

b, x+y2+z2 +2x-4y-6z+14=0

<=> (x2+2x+1)+(y2-4y+4)+(z2-6z+9)=0

<=> (x+1)2+(y-2)2+(z-3)2=0

=>(x+1)2=(y-2)2=(z-3)2=0

=>x+1=y-2=z-3=0

=> x=-1; y=2; z=3

c, 2x2+y2-6x-4y+2xy+5=0

<=> (x2+y2+4+2xy-4x-4y)+(x2-2x+1)=0

<=> (x+y-2)2+(x-1)2=0

=> (x+y-2)2=(x-1)2=0

=>x+y-2=x-1=0

=>x=1; y=1

Câu 1: 

a: \(C=a^2+b^2=\left(a+b\right)^2-2ab=23^2-2\cdot132=265\)

b: \(D=x^3+y^3+3xy\)

\(=\left(x+y\right)^3-3xy\left(x+y\right)+3xy\)

\(=1-3xy+3xy=1\)

1 tháng 10 2018

A=\(x^3-2x^2+x\)

=x.(x2-2x+1)

=x(x-1)2

B=\(2x^2+4x+2-2y^2\)

=\(2\left(x^2+2x+1-y^2\right)\)

=\(2.\left[\left(x+1\right)^1-y^2\right]\)

=\(2\left(x+1-y\right)\left(x+1+y\right)\)

C=\(2xy-x^2-y^2+16\)

=\(-\left(-2xy+x^2+y^2-16\right)\)

=\(-\left[\left(x-y\right)^2-4^2\right]\)

=-(x-y-4)(x-y+4)

D=\(x^3+2x^2y+xy^2-9x\)

=\(x\left(x^2+2xy-y^2-9\right)\)

=\(x.\left[\left(x-y\right)^2-3^2\right]\)

=x.(x-y-3)(x-y+3)

E=\(2x-2y-x^2+2xy-y^2\)

\(=\left(2x-2y\right)-\left(x^2-2xy+y^2\right)\)

=\(2\left(x-y\right)-\left(x-y\right)\left(x-y\right)\)

=(x-y)(2x-2y-x+y)

=(x-y)(x+y)

1 tháng 10 2018

ở câu B:

(x+1)^1 sửa giùm mk thành (x+1)^2