K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 1: 

a: \(\Leftrightarrow2x^2-x-5< x^2+x-6\)

\(\Leftrightarrow x^2-2x+1< 0\)

hay \(x\in\varnothing\)

b: \(\Leftrightarrow x^2-5x-x+4>0\)

\(\Leftrightarrow x^2-6x+4>0\)

\(\Leftrightarrow\left(x-3\right)^2>5\)

hay \(\left[{}\begin{matrix}x>\sqrt{5}+3\\x< -\sqrt{5}+3\end{matrix}\right.\)

21 tháng 7 2019

\(C=5x^2-7x+4\\ =5\left(x^2-\frac{7}{5}x\right)+4\\ =5\left(x^2-2\cdot x\cdot\frac{7}{10}+\left(\frac{7}{10}\right)^2\right)+\frac{31}{20}\\ =\left(x-\frac{7}{10}\right)^2+\frac{31}{10}\ge\frac{31}{10}\forall x\)

Vậy Min C = \(\frac{31}{10}\)khi \(x=\frac{7}{10}\)

\(D=x^2+y^2-2x-4y-6\\ =\left(x^2-2x+1\right)+\left(y^2-4y+4\right)-11\\ =\left(x-1\right)^2+\left(y-2\right)^2-11\)

Ta thấy \(\left\{{}\begin{matrix}\left(x-1\right)^2\ge0\forall x\\\left(y-2\right)^2\ge0\forall y\end{matrix}\right.\)

\(\Rightarrow D=\left(x-1\right)^2+\left(y-2\right)^2-11\ge-11\forall x,y\)

Vậy min D = -11 khi \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

21 tháng 7 2019

\(C=5x^2-7x+4\\ =5x^2-7x+\frac{49}{20}+\frac{31}{20}\\ =\left(x\sqrt{5}-\frac{7\sqrt{5}}{10}\right)^2+\frac{31}{20}\ge\frac{31}{20}\left(\forall x\in R\right)\)

Đẳng thức xảy ra \(\Leftrightarrow x\sqrt{5}-\frac{7\sqrt{5}}{10}=0\Leftrightarrow\sqrt{5}\left(x-\frac{7}{10}\right)=0\Leftrightarrow x=\frac{7}{10}\)

\(D=x^2+y^2-2x-4y-6=0\\ =x^2-2x+1+y^2-4y+4-11\\ =\left(x-1\right)^2+\left(y-2\right)^2-11\ge-11\left(\forall x,y\in R\right)\)

Đẳng thức xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

Vậy \(minC=\frac{31}{20}\), đạt được khi \(x=\frac{7}{10}\); và \(minD=-11\), đạt được khi \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

Chúc bạn học tốt nhaok.

NV
9 tháng 4 2019

\(\sqrt{x^2-4x+5}=\sqrt{\left(x-2\right)^2+1}\ge1\)

Đặt \(\sqrt{x^2-4x+5}=a\Rightarrow a\ge1\)

\(M=2\left(x^2-4x+5\right)+\sqrt{x^2-4x+5}-4\)

\(M=2a^2+a-4=2a^2+3a-2a-3-1\)

\(M=a\left(2a+3\right)-\left(2a+3\right)-1\)

\(M=\left(a-1\right)\left(2a+3\right)-1\)

Do \(a\ge1\Rightarrow\left\{{}\begin{matrix}a-1\ge0\\2a+3>0\end{matrix}\right.\) \(\Rightarrow\left(a-1\right)\left(2a+3\right)\ge0\Rightarrow M\ge-1\)

\(\Rightarrow M_{min}=-1\) khi \(a=1\Leftrightarrow x=2\)

3 tháng 6 2017

\(B=x^2-2x+y^2-4x+7=x^2-6x+9+y^2-2=\left(x-3\right)^2+y^2-2\)\(\left(x-3\right)^2\ge0\)\(y^2\ge0\) nên \(B\ge-2\)

đẳng thức xảy ra khi và chỉ khi \(x=3\)\(y=0\)

vậy MIN B = -2 tại x=3 và y=0

3 tháng 6 2017

mình nghĩ là theo đề thì chỗ kia phải là -4y chứ sao lại -4x nhỉ ???

Bài 2: 

a: \(A=2\sqrt{7}-1+\left(\sqrt{7}+4\right)\)

\(=2\sqrt{7}-1+\sqrt{7}+4=3\sqrt{7}+3\)

b: \(B=\sqrt{x-1+2\sqrt{x-1}+1}+\sqrt{x-1-2\sqrt{x-1}+1}\)

\(=\sqrt{x-1}+1+1-\sqrt{x-1}=2\)