tìm m/f(x)=x^2-(m+1)x+2 luôn dương với mọi x

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\text{Δ}=\left(m+1\right)^2-4\cdot2=\left(m+1\right)^2-8\)

Để f(x)>0 với mọi x thì \(\left\{{}\begin{matrix}\text{Δ}< 0\\a>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}1>0\\\left(m+1\right)^2-8< 0\end{matrix}\right.\)

=>\(\left(m+1\right)^2-8< 0\)

=>\(\left(m+1\right)^2< 8\)

=>\(-2\sqrt{2}< m+1< 2\sqrt{2}\)

=>\(-2\sqrt{2}-1< m< 2\sqrt{2}-1\)

30 tháng 6 2016

Gán x = 1;2;3 lần lượt ta có:

  \(F\left(1\right)=a+b+c\)chia hết cho m. (1)

  \(F\left(2\right)=a^2+2b+c\)chia hết cho m. (2)

  \(F\left(3\right)=a^3+3b+c\)chia hết cho m. (3)

Từ (1) và (2) => \(\left(a^2+2b+c\right)-\left(a+b+c\right)=a\left(a-1\right)+b\)chia hết cho m. (4)

Từ (2) và (3) => \(\left(a^3+3b+c\right)-\left(a^2+2b+c\right)=a^2\left(a-1\right)+b\)chia hết cho m. (5)

Từ (4) và (5) => \(\left[a^2\left(a-1\right)+b\right]-\left[a\left(a-1\right)+b\right]=a\left(a-1\right)^2\)chia hết cho m.

Thay vào (4) => b chia hết cho m

=> b2  chia hết cho m. ĐPCM

29 tháng 6 2016

sao phần đầu toán toán lớp 8,9 thế ?? e lớp 5 chẳng trloi của ai trên đầu cả !! nhưng e chúc các a chị nhận đc nhìu câu trloi hay nhé !! ai ngang qua thả cho e nha ! e cám ơn rất nhìu ạ !

19 tháng 3 2022

a= 1; b'= -(m+1); c=2m

1. Δ'>0

Theo Hệ thức Viet ta có: S=...= 2(m+1) và P= 2m

2. Để PT có 2 nghiệm cùng dương 

\(\left\{{}\begin{matrix}S=2\left(m+1\right)>0\Leftrightarrow m>-1\\P=2m>0\Leftrightarrow m>0\end{matrix}\right.\Rightarrow m>0\)

Vậy với m>0 thì PT có 2 nghiệm cùng dương

3.  Từ Viets: 

S= 2(m+1)= 2m+2 

P= 2m

Suy ra: S-P=2m+2-2m=2

hay x1+x2-x1.x2-2=0

21 tháng 7 2015

a/ Với x ∈ [0;1] thì

\(f\left(x\right)=2\left(m-1\right)x+\frac{m\left(x-2\right)}{-\left(x-2\right)}=2\left(m-1\right)x-m\)

\(+m-1=0\Leftrightarrow m=1\text{ thì }f\left(x\right)=-1<0\text{ với mọi }x\in\left[0;1\right]\)

\(+m-1>0\Leftrightarrow m>1\text{ thì }2\left(m-1\right).0-m\le2\left(m-1\right)x-m\le2\left(m-1\right).1-m\)

\(\Rightarrow f\left(x\right)\le m-2\text{ với mọi }x\in\left[0;1\right]\)

Để f(x) < 0 thì m - 2 < 0 <=> m < 2.

Vậy 1 < m < 2.

\(+m-1<0\)\(\Leftrightarrow m<1\)thì \(2\left(m-1\right).1-m\le f\left(x\right)\le2\left(m-1\right).0-m\)

\(\Rightarrow f\left(x\right)\le-m\text{ với mọi }x\in\left[0;1\right]\)

Để f(x) < 0 thì -m < 0 <=> m > 0

Vậy 0 < m < 1.

Kết luận: \(m\in\left(0;2\right)\)

b/ đồ thị hàm số cắt trục hoành tại 1 điểm thuộc (1;2) <=> f(x) có 1 nghiệm trong khoảng (1;2)

Với x ∈ (1;2) thì \(f\left(x\right)=2\left(m-1\right)x-m\)

Xét phương trình \(2\left(m-1\right)x-m=0\)

\(+m=1\text{ thì pt thành }-1=0\text{ (vô lí)}\)

\(+\text{Xét }m\ne1.pt\Leftrightarrow x=\frac{m}{2\left(m-1\right)}\)

\(x\in\left(1;2\right)\Rightarrow2>\frac{m}{2\left(m-1\right)}>1\)

Giải bất phương trình trên để được \(\frac{4}{3}<\)\(m<2\)

Kết luận: \(m\in\left(\frac{4}{3};2\right)\)

16 tháng 4 2017
1, (delta)' = (-m)^2 - (m^2 - 4) = m^2 - m^2 + 4 = 4 => Ptr (1) luôn có nghiệm với mọi m 2, Với mọi m ptr (1) có 2 nghiệm x1,x2 Theo hộ thức Vi-ét ta có x1 + x2 = - b/a = -(-2m)/1 = 2m x1*x2 = c/a =(m^2 - 4)/1= m^2 - 4 Theo bài ra ta có x1^2 + x2^2 = 26 <=> (x1+x2)^2 - 2*x1*x2 = 26 <=> (2m)^2 - 2*(m^2 - 4) = 26 <=> 4m^2 - 2m^2 - 8 = 26 <=> 2m^2 - 8 - 26 = 0 <=> 2(m^2 - 17) = 0 <=> m^2 - 17 = 0 <=> (m - căn17)(m + căn17) = 0 <=> m = căn17 hoặc m = -(căn17) (Sr ko nhìu tg nên mk ko sd kí hiệu)

Áp dụng Delta '

\(a=1\) 

\(b=-2\left(m+2\right)\Rightarrow b'=\frac{-2\left(m+2\right)}{2}=-m-2\)

\(c=6m+3\)

\(\Rightarrow\Delta'=\left(-m-2\right)^2-1.\left(6m+3\right)\)

            \(=m^2+4m+4-6m-3\)

             \(=m^2-2m+1=\left(m-1\right)^2\ge0\)

Vậy phương trình luôn có nghiệm với mọi m.

17 tháng 4 2020

phương trình bằng 111111111 + 111111111 = 222222222

29 tháng 7 2017

Nguyễn Thị Ngọc Anh

Cho 2 đường thẳng (d1): y = mx - 2 và (d2): y = (m - 2)x + m,Chứng minh với mọi giá trị của m,đường thẳng (d1) luôn đi qua điểm cố định B,đường thẳng (d2) luôn đi qua điểm cố định C,Toán học Lớp 9,bài tập Toán học Lớp 9,giải bài tập Toán học Lớp 9,Toán học,Lớp 9

29 tháng 7 2017

bạn lấy bài này ở đâu ra vậy?

19 tháng 1 2017

Hệ số lẻ quá nhìn ngán

17 tháng 5 2016

Câu này là hàm số lớp 9 đây :) Sẽ áp dụng Viet :) Cô hướng dẫn thôi nhé ^^

a. Ta tính được

 \(\Delta=\left(4m-1\right)^2-4.\left[2\left(m-4\right)\right]=16m^2-16m+33=\left(4m+2\right)^2+29\ge29>0\)

b. Biến đổi \(\left|x_1-x_2\right|=17\Leftrightarrow\left(x_1-x_2\right)^2=289\Leftrightarrow x_1^2+x_2^2-2x_1x_2=289\)

\(=\left(x_1+x_2\right)^2-4x_1x_2=289\)

Theo định lý Viet ta có: \(\hept{\begin{cases}x_1+x_2=1-4m\\x_1x_2=2\left(m-4\right)\end{cases}}\)

Từ đó; \(\left(1-4m\right)^2-4.2.\left(m-4\right)=289\Leftrightarrow16m^2-16m+33=289\Leftrightarrow16m^2-16m-256=0\)

Sau đó em sẽ tìm đc m :)))