Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(x^2-5x+4x-20=0.\)
\(x^2-x-20=0\)
\(\left(x^2-x+\frac{1}{4}\right)-20-\frac{1}{4}=0\)
\(\left(x-\frac{1}{2}\right)^2-\left(\frac{20.4+1}{4}\right)=0\)
\(\hept{\begin{cases}x-\frac{1}{2}-\left(\frac{20.4+1}{4}\right)=0\\x-\frac{1}{2}+\left(\frac{20.4+1}{4}\right)=0\end{cases}}\)
b) \(x^2+6x-7x-42=0\)
\(x^2-x-42=0\)
\(x^2-x+\frac{1}{4}-42-\frac{1}{4}=0\)
\(\left(x-\frac{1}{2}\right)^2-\left(\frac{42.4+1}{4}\right)=0\) " tương tự con A
\(x^3-16x=0\)
\(x\left(x^2-16\right)=0\)
\(x=0,+4,-4\)
\(x^3-16x=0\)
\(x.\left(x^2-16\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x^2-16=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x^2=16\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\x=\pm4\end{cases}}}\)
Vậy \(x=0\)hoặc \(x=\pm4\)
Tham khảo nhé~
\(x^2\left(y-z\right)+y^2\left(z-x\right)+z^2\left(x-y\right)=x^2\left(y-z\right)-y^2\left[\left(y-z\right)+\left(x-y\right)\right]+z^2\left(x-y\right)\)
\(=x^2\left(y-z\right)-y^2\left(y-z\right)-y^2\left(x-y\right)+z^2\left(x-y\right)\)
\(=\left(x^2-y^2\right)\left(y-z\right)-\left(y^2-z^2\right)\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y\right)\left(y-z\right)-\left(y-z\right)\left(y+z\right)\left(x-y\right)\)
\(=\left(x-y\right)\left(y-z\right)\left(x+y-y-z\right)\)
\(=\left(x-y\right)\left(y-z\right)\left(x-z\right)\)
(x2 + x + 2)(x2 + 9x + 18) - 28
= x4 + 10x3 + 29x2 + 36x + 36 - 28
= x4 + 10x3 + 29x2 + 36x + 8
a, \(\left(x+2\right)\left(x+3\right)\left(x-7\right)\left(x-8\right)\)
\(=\left[\left(x+2\right)\left(x-7\right)\right].\left[\left(x+3\right)\left(x-8\right)\right]\)
\(=\left(x^2-5x-14\right)\left(x^2-5x-24\right)-144\)(1)
Đặt \(x^2-5x-14=t\) thì \(x^2-5x-24=t-10\)
Thay vào (1), ta có:
\(\left(x+2\right)\left(x+3\right)\left(x-7\right)\left(x-8\right)\)
\(=t\left(t-10\right)-144\)
\(=t^2-10t-144\)
\(=t^2-18t+8t-144\)
\(=t\left(t-18\right)+8\left(t-18\right)\)
\(=\left(t+8\right)\left(t-18\right)\)
\(=\left(x^2-5x-14+8\right)\left(x^2-5x-14-18\right)\)
\(=\left(x^2-5x-6\right)\left(x^2-5x-32\right)\)
\(=\left(x+1\right)\left(x-6\right)\left(x^2-5x-32\right)\)
(x + y)3 - 1 - 3xy(x + y - 1)
= x3 + 3x2y + 3xy2 + y3 - 1 - 3x2y - 3xy2 + 3xy
= x3 - 1 + 3xy
= x(x2 + 3y) - 1
k bt lm nx r :v
\(\left(x+y\right)^3-1-3xy\left(x+y-1\right) \)
\(=\left(x+y-1\right)\left[\left(x+y\right)^2+x+y+1\right]-3xy\left(x+y-1\right)\)
\(=\left(x+y-1\right)\left(x^2+2xy+y^2+x+y+1\right)-3xy\left(x+y-1\right)\)
\(=\left(x+y-1\right)\left(x^2-xy+y^2+x+y+1\right)\)
Đối với dạng bài này thì thường ta sẽ phải tách hạng tử hoặc cũng có thể dùng hệ số bất định:
Mik chỉ giải phương p tách cho dễ hiểu ,còn phương p kia bạn tự tìm hiểu nhé
Ta có: x^4 - 8x + 63
= (x^2)^2 -(16x^2 + 16x^2)+(64-1) -8x
=(x^2)^2 +16x^2+64 -16x^2-8x-1
=((x^2)^2 + 2.8.x^2+ 8^2) - ((4x)^2 + 2. 4x.1+1)
= (x^2+8)^2 - (4x+1)^2
= (x^2+8-4x-1)(x^2+8+4x+1)
=(x^2-4x+7)(x^2+4x+9)
Phương pháp kia thì mạnh hơn nhưng hơi khó hiểu