Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) Ta có: \(\dfrac{17}{6}-x\left(x-\dfrac{7}{6}\right)=\dfrac{7}{4}\)
\(\Leftrightarrow\dfrac{17}{6}-x^2+\dfrac{7}{6}x-\dfrac{7}{4}=0\)
\(\Leftrightarrow-x^2+\dfrac{7}{6}x+\dfrac{13}{12}=0\)
\(\Leftrightarrow-12x^2+14x+13=0\)
\(\Delta=14^2-4\cdot\left(-12\right)\cdot13=196+624=820\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{14-2\sqrt{205}}{-24}=\dfrac{-7+\sqrt{205}}{12}\\x_2=\dfrac{14+2\sqrt{2015}}{-24}=\dfrac{-7-\sqrt{205}}{12}\end{matrix}\right.\)
b) Ta có: \(\dfrac{3}{35}-\left(\dfrac{3}{5}-x\right)=\dfrac{2}{7}\)
\(\Leftrightarrow\dfrac{3}{5}-x=\dfrac{3}{35}-\dfrac{10}{35}=\dfrac{-7}{35}=\dfrac{-1}{5}\)
hay \(x=\dfrac{3}{5}-\dfrac{-1}{5}=\dfrac{3}{5}+\dfrac{1}{5}=\dfrac{4}{5}\)
b: \(\Leftrightarrow\left[{}\begin{matrix}2x-1=3\\2x-1=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
`a, 3/4 - 5/4 :(x-1) =1/2`
`=> 5/4:(x-1)= 3/4 -1/2`
`=> 5/4:(x-1)= 3/4 - 2/4`
`=> 5/4:(x-1)= 1/4`
`=> x-1= 5/4 : 1/4`
`=> x-1=5`
`=>x=5+1`
`=>x=6`
__
`(1/2-x)^2 -2^2 =12`
`=> (1/2-x)^2 = 12+4`
`=> (1/2-x)^2= 16`
`=> (1/2-x)^2 =4^2`
\(\Rightarrow\left[{}\begin{matrix}\dfrac{1}{2}-x=4\\\dfrac{1}{2}-x=-4\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{7}{2}\\x=\dfrac{9}{2}\end{matrix}\right.\)
__
`(1/2)^(2x-1) =1/16`
`=> (1/2)^(2x-1) = (1/2)^4`
`=> 2x-1=4`
`=> 2x=4+1`
`=>2x=5`
`=>x=5/2`
\(a,\dfrac{3}{4}-\dfrac{5}{4}:\left(x-1\right)=\dfrac{1}{2}\)
\(\dfrac{5}{4}:\left(x-1\right)=\dfrac{3}{4}-\dfrac{1}{2}\)
\(\dfrac{5}{4}:\left(x-1\right)=\dfrac{1}{4}\)
\(x-1=\dfrac{5}{4}:\dfrac{1}{4}\)
\(x-1=5\)
\(x=6\)
\(\left(\dfrac{1}{2}-x\right)^2-2^2=12\)
\(\left(\dfrac{1}{2}-x\right)^2-4=12\)
\(\left(\dfrac{1}{2}-x\right)^2=16\)
\(\left(\dfrac{1}{2}-x\right)^2=4^2hoặc\left(\dfrac{1}{2}-x\right)^2=\left(-4\right)^2\)
\(\dfrac{1}{2}-x=4hoặc\dfrac{1}{2}-x=-4\)
=>1/2 -x =4 1/2 -x= -4
=> x=1/2-4 x=1/2-(-4)
=>x=-7/2 x=9/2
vậy x∈{-7/2 ; 9/2}
\(\left(\dfrac{1}{2}\right)^{2x-1}=\dfrac{1}{16}\)
\(=>\left(\dfrac{1}{2}\right)^{2x-1}=\left(\dfrac{1}{2}\right)^4\)
\(=>2x-1=4\)
\(=>2x=5\)
\(=>x=\dfrac{5}{2}\)
a) \(\Leftrightarrow\left|2x-3\right|=\frac{1}{4}\Leftrightarrow\orbr{\begin{cases}x\ge\frac{3}{2}\mid:2x-3=\frac{1}{4}\Rightarrow2x=\frac{13}{4}\Rightarrow x=\frac{13}{8}\left(TM\right)\\x< \frac{3}{2}\mid:3-2x=\frac{1}{4}\Rightarrow2x=\frac{11}{4}\Rightarrow x=\frac{11}{8}\left(TM\right)\end{cases}.}\)
b) \(\Leftrightarrow\left|x-1\right|=\frac{3}{4}\Leftrightarrow\orbr{\begin{cases}x\ge1\mid:x-1=\frac{3}{4}\Rightarrow x=\frac{7}{4}\left(TM\right)\\x< 1\mid:1-x=\frac{3}{4}=>x=\frac{1}{4}\left(TM\right)\end{cases}}\)
c) \(\frac{3}{5\left(x-\frac{5}{6}\right)}-\frac{1}{2\left(\frac{3}{2}-1\right)}=-\frac{1}{4}\Leftrightarrow\frac{3}{\frac{5\left(6x-5\right)}{6}}-\frac{1}{2\cdot\frac{1}{2}}=-\frac{1}{4}\Leftrightarrow\frac{18}{5\left(6x-5\right)}=-\frac{1}{4}+1\)
\(\Leftrightarrow\frac{18}{5\left(6x-5\right)}=\frac{3}{4}\Leftrightarrow6x-5=\frac{24}{5}\Leftrightarrow6x=\frac{49}{5}\Leftrightarrow x=\frac{49}{30}\)
d) \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2015}{2016}\)
\(\Leftrightarrow\frac{2}{2\cdot3}+\frac{2}{3\cdot4}+\frac{2}{4\cdot5}+...+\frac{2}{x\left(x+1\right)}=\frac{2015}{2016}\)
\(\Leftrightarrow2\cdot\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2015}{2016}\)
\(\Leftrightarrow2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2015}{2016}\Leftrightarrow2\cdot\frac{x+1-2}{2\left(x+1\right)}=\frac{2015}{2016}\Leftrightarrow\frac{x-1}{x+1}=\frac{2015}{2016}\)
\(\Leftrightarrow2016x-2016=2015x+2015\Leftrightarrow x=2015+2016=4031\)
Vậy x = 4031.
Câu A:
-3.(2x-1)^2 luôn nhỏ hơn hoặc bằng 0 => A luôn nhỏ hơn hoặc bằng 5 => A max bằng 5 khi x = 1/2
Câu B
B=7/2 - (x-1)^2
-(x-1)^2 luôn nhỏ hơn hoặc bằng 0 => B luôn nhỏ hơn hoặc bằng 7/2 => Bmax bằng 7/2 khi x=1