K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2020

cậu cho mk xin link facebook của jonathan galindo đi rồi mk sẽ trả lời câu hỏi của cậu

12 tháng 7 2020

tớ biết

NV
23 tháng 7 2021

\(A^2=\left(\sqrt{x+1}+\sqrt{y+2}\right)^2\le2\left(x+1+y+2\right)=36\)

\(\Rightarrow A\le6\)

\(A_{max}=6\) khi \(\left\{{}\begin{matrix}x=8\\y=7\end{matrix}\right.\)

23 tháng 8 2018
Giúp mình nha mn cảm ơn nhiều ạ
15 tháng 6 2020

ĐK: \(-2\le x\le2\)

Đặt: \(\sqrt{x+2}+\sqrt{2-x}=t>0\)

=> \(t^2=\left(\sqrt{x+2}+\sqrt{2-x}\right)^2\le2\left(x+2+2-x\right)=8\)

=> \(0< t\le2\sqrt{2}\)

Ta có: \(t^2=\left(\sqrt{x+2}+\sqrt{2-x}\right)^2=x+2+2-x+2\sqrt{4-x^2}\)

=> \(\sqrt{4-x^2}=\frac{t^2-4}{2}\)

Ta có: \(P=t-\frac{t^2-4}{2}=\frac{\left(t+2\sqrt{2}-2\right)\left(2\sqrt{2}-t\right)}{2}+2\sqrt{2}-2\ge2\sqrt{2}-2\)

=> min P = \(2\sqrt{2}-2\) tại  \(t=2\sqrt{2}\)khi đó x = 0 

Vậy:...

16 tháng 6 2020

em cảm ơn ạ