Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(P=x^2+4x+2xy+3y^2+5y+2017\)
\(=x^2+2xy+y^2+4y+4+4x+2y^2+y+\dfrac{1}{8}+\dfrac{16103}{8}\)
\(=\left(x+y+2\right)^2+2\left(y^2+\dfrac{y}{2}+\dfrac{1}{16}\right)+\dfrac{16103}{8}\)
\(=\left(x+y+2\right)^2+2\left(y+\dfrac{1}{4}\right)^2+\dfrac{16103}{8}\ge\dfrac{16103}{8}\)
Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}x=-\dfrac{7}{4}\\y=-\dfrac{1}{4}\end{matrix}\right.\)
b)\(Q=-x^2+4x-3y^2+6y+2017\)
\(=-x^2+4x-4-3y^2+6y+3+2024\)
\(=-\left(x^2-4x+4\right)-\left(3y^2-6y-3\right)+2024\)
\(=-\left(x-2\right)^2-3\left(y^2-2y-1\right)+2024\)
\(=-\left(x-2\right)^2-3\left(y-1\right)^2+2024\ge2024\)
Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
Ta có:
\(P=x^2+4x+2xy+3y^2+5y+2017\)
\(=x^2+2x\left(y+2\right)+\left(y+2\right)^2+2y^2+y+2013\)
\(=\left[x+\left(y+2\right)\right]^2+2\left(y^2+y+0,25\right)+2012,5\)
\(=\left(x+y+2\right)^2+2\left(y+0,5\right)^2+2012,5\ge2012,5\)
Dấu "=" xảy ra khi:
\(\Leftrightarrow\left\{{}\begin{matrix}x+y+2=0\\y+0,5=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=-0,5\\x=-1,5\end{matrix}\right.\)
Vậy \(minP=2012,5\) khi \(\left\{{}\begin{matrix}y=-0,5\\x=-1,5\end{matrix}\right.\)
Ta có:
\(Q=-x^2+4x-3y^2+6y+2017\)
\(=-\left(x^2-4x+4\right)-3\left(y^2-2y+1\right)+2024\)
\(=-\left(x-2\right)^2-3\left(y-1\right)^2+2024\le2024\)
Dấu "=" xảy ra khi \(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y-1=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
Vậy \(maxQ=2024\) khi \(\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
a)Ta thấy: \(x^2\ge0\forall x\)\(\Rightarrow-x^2\le0\forall x\)\(\Rightarrow5-x^2\le5\forall x\)
Đẳng thức xảy ra khi \(-x^2=0\Rightarrow x=0\)
b)Ta thấy:\(x^2\ge0\forall x\)\(\Rightarrow5+x^2\ge5\forall x\)\(\Rightarrow\dfrac{1}{5+x^2}\le\dfrac{1}{5}\forall x\)
Đẳng thức xảy ra khi \(x^2=0\Rightarrow x=0\)
c)Ta có: \(x^2-4x+7=x^2-4x+4+3\)
\(=\left(x-2\right)^2+3\ge3\forall x\)\(\Rightarrow\dfrac{1}{\left(x-2\right)^2+3}\le\dfrac{1}{3}\forall x\)
\(\Rightarrow\dfrac{3}{\left(x-2\right)^2+3}\le\dfrac{3}{3}=1\forall x\)
Đẳng thức xảy ra khi \(\left(x-2\right)^2=0\Rightarrow x=2\)
d)\(-2x^2+3x+2017\)
\(=\dfrac{16145}{8}-2x^2+3x-\dfrac{9}{8}\)
\(=\dfrac{16145}{8}-2\left(x^2-\dfrac{3x}{2}+\dfrac{9}{16}\right)\)
\(=\dfrac{16145}{8}-2\left(x-\dfrac{3}{4}\right)^2\le\dfrac{16145}{8}\forall x\)
Đẳng thức xảy ra khi \(-2\left(x-\dfrac{3}{4}\right)^2=0\)\(\Rightarrow x=\dfrac{3}{4}\)
a) ta có: \(-x^2\le0\) với mọi x
=> \(5-x^2\le5\) với mọi x
dấu "=" xảy ra khi x= 0
vậy max = 5 khi x = 0
b) để \(\dfrac{1}{5+x^2}\) nhận max
<=> 5+x2 nhận min
mà x2 \(\ge\) 0 với mọi x
=> 5+x2\(\ge\) 5 với mọi x
dấu "=" xảy ra khi x = 0
vậy Min của 5 +x2 =5 khi x =0
=> max của \(\dfrac{1}{5+x^2}\) = \(\dfrac{1}{5}\) khi x =0
c) để \(\dfrac{3}{x^2-4x+7}\) nhận max
<=> x2-4x+7 nhận min
ta có: x2-4x+7 = (x-2)2+3
mà (x-2)2 \(\ge\) 0 với mọi x
=> (x-2)2+3 \(\ge\) 3 với mọi x
<=> x2-4x+7 \(\ge\) 3 với mọi x
dấu "=" xảy ra khi x=2
=> min của x2 -4x+7 = 3 khi x=2
=> max của \(\dfrac{1}{x^2-4x+7}=\dfrac{1}{3}\) khi x=2
d) Ta có:-2x2+3x+2017
= \(-2\left(x^2-\dfrac{3}{2}x+\dfrac{9}{16}\right)+2018,125\)
= \(-2\left(x-\dfrac{3}{4}\right)^2+2018,125\)
mà \(-2\left(x-\dfrac{3}{4}\right)^2\le0\) với mọi x
=> \(-2\left(x-\dfrac{3}{4}\right)^2+2018,125\)\(\le\) 2018,125 với mọi x
=> -2x2+3x+2017 \(\le\) 2018,125 với mọi x
dấu "=" xảy ra khi x =\(\dfrac{3}{4}\)
=> max của -2x2+3x+2017 = 2018,125 khi \(x=\dfrac{3}{4}\)
Mình làm câu a thôi nha câu b tương tự nha bạn :)
\(M=2x^2+9y^2-16x-12y+2017\)
\(=\left(2x^2-16x\right)+\left(9y^2-12y\right)+2017\)
\(=2\left(x^2-8x+4^2\right)+\left(9y^2-12y+2^2\right)+1981\)
\(=2\left(x-4\right)^2+\left(3y-2\right)^2+1981\)
Dấu "=" xảy ra khi và chỉ khi \(\left[\begin{matrix}x-4=0\\3y-2=0\end{matrix}\right.\Rightarrow\left[\begin{matrix}x=4\\y=\frac{2}{3}\end{matrix}\right.\)
Vậy \(Min_M=1981\) khi và chỉ khi \(\left\{\begin{matrix}x=4\\y=\frac{2}{3}\end{matrix}\right.\).
1) a) Đặt biểu thức là A
\(A=2x^2+4y^2-4xy-4x-4y+2017\)
\(A=\left(x-2y\right)^2+x^2-4x-4y+2017\)
\(A=\left(x-2y\right)^2+2\left(x-2y\right)+x^2-6x+2017\)
\(A=\left(x-2y-1\right)^2+\left(x+3\right)^2+2008\)
Vậy: MinA=2008 khi x=-3; y=-2
3) a) \(A=\dfrac{1}{x^2+x+1}\)
\(B=x^2+x+1=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
\(\Rightarrow B\ge\dfrac{3}{4}\Rightarrow A\ge\dfrac{4}{3}\)
Vậy MinA là \(\dfrac{4}{3}\) khi x=-0,5
a) \(\frac{4x^2-3x+17}{x^3-1}+\frac{2x-1}{x^2+x+1}+\frac{6}{1-x}\)
\(=\frac{4x^2-3x+17}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{6\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\frac{4x^2-3x+17+2x^2-x-2x+1-6x^2-6x-6}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\frac{-12x+12}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\frac{-12\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=-\frac{12}{x^2+x+1}\)
b) \(\frac{1}{x^2-x+1}-\frac{x^2+2}{x^3+1}+1=\frac{x+1-x^2-2+x^3+1}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(=\frac{x-x^2+x^3}{\left(x+1\right)\left(x^2-x+1\right)}=\frac{x\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}=\frac{x}{x+1}\)
c) \(N=\frac{a}{ab+a+abc}+\frac{b}{bc+b+1}+\frac{2017c}{ac+2017c+2017}\)
\(N=\frac{a}{a\left(b+1+bc\right)}+\frac{b}{bc+b+1}+\frac{2017c}{ac+2017c+2017}\)
\(N=\frac{1}{b+1+bc}+\frac{b}{bc+b+1}+\frac{2017c}{ac+2017c+2017}\)
\(N=\frac{1+b}{b+1+bc}+\frac{abc^2}{ac+abc^2+abc}\)
\(N=\frac{1+b}{b+1+bc}+\frac{abc^2}{ac\left(1+bc+b\right)}\)
\(N=\frac{1+b}{b+1+bc}+\frac{bc}{1+bc+b}\)
\(N=\frac{1+b+bc}{b+1+bc}\)
\(N=1.\)
câu A thiếu đề
B=\(x^2-2x+2017=\left(x-1\right)^2+2016>=2016\)
Min B=2016 khi x-1=0<=>x=1
+)D=\(-2x^2+4x+2017=-2\left(x^2-2x+1\right)+2019=-2\left(x-1\right)^2+2019< =2019\)
=>Max D=2019, dấu '=' xảy ra khi x-1=0<=>x=1
Bổ sung câu A. \(A=x^2+2xy+3y^2-4y+2017\)