Tìm max

D= -2x^2+3x-1

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2023

\(D=-2x^2+3x-1\)

\(\Rightarrow D=-2\left(x^2-\dfrac{3}{2}x\right)-1\)

\(\Rightarrow D=-2\left(x^2-\dfrac{3}{2}x+\dfrac{9}{4}-\dfrac{9}{4}\right)-1\)

\(\Rightarrow D=-2\left(x^2-\dfrac{3}{2}x+\dfrac{9}{4}\right)-1+\dfrac{9}{2}\)

\(\Rightarrow D=-2\left(x-\dfrac{3}{2}\right)^2-\dfrac{7}{2}\le-\dfrac{7}{2}\left(-2\left(x-\dfrac{3}{2}\right)^2\le0,\forall x\right)\)

\(\Rightarrow Max\left(D\right)=-\dfrac{7}{2}\left(tạix=\dfrac{3}{2}\right)\)

11 tháng 8 2023

MAXD = -7/2 khi x = 3/2

14 tháng 3 2016

bài 1: <=> 3x2+3x-2x2-2x+x+1=0 <=> x2+2x+1=0 <=>(x+1)2=0<=>x=-1

bài 2: =(x-3)2+1

vì (x-3)2>=0 với mọi x nên (x-3)2+1>=1 => GTNN của x2-6x+10 là 1 khi x=3

4 tháng 8 2018

\(\left(2x+1\right)^2-2\left(2x+1\right)\left(3-x\right)+\left(3-x\right)^2\)

\(=\left[\left(2x+1\right)-\left(3-x\right)\right]^2\)

\(=\left(3x-2\right)^2\)

p/s: chúc bạn học tốt

13 tháng 11 2016

Hệ số của đơn thức thương trong phép chia -3x3yz2 : 5x2yz
(Nhập kết quả dưới dạng số thập phân gọn nhất)

là : 

- 0,6

đ/s : - 0,6

Mình vừa làm xong

28 tháng 11 2016

Ta có :

\(6^{5x+2}=36^{3x-4}\)

\(\Rightarrow6^{5x+2}=\left(6^2\right)^{3x-4}\)

\(\Rightarrow6^{5x+2}=6^{6x-8}\)

=> 5x + 2 = 6x - 8

=> x = 10

Vậy x = 10

28 tháng 11 2016

5x +2 = 6x -8

x = 10

30 tháng 6 2018

ĐKXĐ: x khác -2;-1;0;1.

\(\frac{1}{x+1}+\frac{1}{x+2}+\frac{1}{3x-3}=\frac{1}{5x}\)

\((\frac{1}{x+1}-\frac{1}{5x})+(\frac{1}{x+2}+\frac{1}{3x-3})=0\)

\(\frac{4x-1}{5x(x+1)}+\frac{4x-1}{(x+2)(3x-3)}=0\)

hoặc \(4x-1=0\) hoặc \(5x(x+1)=(x+2)(3x-3)\)

Phương trình thứ nhất có nghiệm x=0,25 (t/m đkxđ)

Phương trình thứ 2 vô nghiệm.

Vậy pt có tập nghiệm S={0,25}.

Chúc bạn học tốt!

18 tháng 5 2017

1)We have: \(a-b=8\)

\(\Rightarrow\left(a-b\right)^2=64\)

\(\Rightarrow a^2-2ab+b^2=64\)

\(\Rightarrow a^2+2ab+b^2-4ab=64\)

\(\Rightarrow\left(a+b\right)^2=64+4ab=64+4\cdot10=64+40=104\)

Hence: \(\left(a+b\right)^2=104\)

2)We have: \(a+b=8\)

\(\Rightarrow\left(a+b\right)^2=64\)

\(\Rightarrow a^2+2ab+b^2=64\)

\(\Rightarrow a^2-2ab+b^2+4ab=64\)

\(\Rightarrow\left(a-b\right)^2=64-4ab=64-4\cdot10=64-40=24\)

Hence \(\left(a-b\right)^2=24\)