Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt x^2-7x=y=> \(y\ge-\frac{49}{4}\) (*)
\(A=y\left(y+12\right)=y^2+12y=\left(y+6\right)^2-36\ge-36\)
đẳng thức khi y=-6 thủa mãn đk (*)
Vậy: GTNN của A=-36 khí y=-6 =>\(\left[\begin{matrix}x=1\\x=6\end{matrix}\right.\)
a)\(\frac{x^2+y^2-1+2xy}{x^2-y^2+1+2x}\)
\(\Leftrightarrow\frac{\left(x+y\right)^2-1}{\left(x+1\right)^2-y^2}\)
\(\Leftrightarrow\frac{\left(x+y+1\right)\left(x+y-1\right)}{\left(x+1-y\right)\left(x+1+y\right)}\)
\(\Leftrightarrow\frac{x+y-1}{x-y+1}\)
b)\(\frac{3x^3-6x^2y+xy^2-2y^3}{9x^5-18x^4y-xy^4+2y^5}\)
\(\Leftrightarrow\frac{3x^2\left(x-2y\right)+y^2\left(x-2y\right)}{9x^4\left(x-2y\right)-y^4\left(x-2y\right)}\)
\(\Leftrightarrow\frac{\left(3x^2+y^2\right)\left(x-2y\right)}{\left(9x^4-y^4\right)\left(x-2y\right)}\)
\(\Leftrightarrow\frac{3x^2+y^2}{\left(3x^2-y^2\right)\left(3x^2+y^2\right)}\)
\(\Leftrightarrow\frac{1}{3x^2-y^2}\)
1) \(A=\frac{2018x^2-2.2018x+2018^2}{2018x^2}=\frac{\left(x-2018\right)^2+2017x^2}{2018x^2}=\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\)
vì \(\frac{\left(x-2018\right)^2}{2018x^2}\ge0\Rightarrow\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\ge\frac{2017}{2018}\)
dấu = xảy ra khi x-2018=0
=> x=2018
Vậy Min A=\(\frac{2017}{2017}\)khi x=2018
2) \(B=\frac{3x^2+9x+17}{3x^2+9x+7}=\frac{3x^2+9x+7+10}{3x^2+9x+7}=1+\frac{10}{3x^2+9x+7}=1+\frac{10}{3.x^2+9x+7}\)
\(=1+\frac{10}{3.\left(x^2+9x\right)+7}=1+\frac{10}{3.\left[x^2+\frac{2.x.3}{2}+\left(\frac{3}{2}\right)^2\right]-\frac{9}{4}+7}=1+\frac{10}{3.\left(x+\frac{9}{2}\right)^2+\frac{1}{4}}\)
để B lớn nhất => \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\)nhỏ nhất
mà \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)vì \(3.\left(x+\frac{3}{2}\right)^2\ge0\)
dấu = xảy ra khi \(x+\frac{3}{2}=0\)
=> x=\(-\frac{3}{2}\)
Vậy maxB=\(41\)khi x=\(-\frac{3}{2}\)
3) \(M=\frac{3x^2+14}{x^2+4}=\frac{3.\left(x^2+4\right)+2}{x^2+4}=3+\frac{2}{x^2+4}\)
để M lớn nhất => x2+4 nhỏ nhất
mà \(x^2+4\ge4\)(vì x2 lớn hơn hoặc bằng 0)
dấu = xảy ra khi x2 =0
=> x=0
Vậy Max M\(=\frac{7}{2}\)khi x=0
ps: bài này khá dài, sai sót bỏ qua =))
a.\(\frac{4x-1}{2x^2y}-\frac{7x-1}{3x^2y}\) MTC=6x2y
\(=\frac{3\left(4x-1\right)}{6x^2y}-\frac{2\left(7x-1\right)}{6x^2y}\)
\(=\frac{12x-3-\left(14x-2\right)}{6x^2y}\)
\(=\frac{12x-3-14x+2}{6x^2y}\)
\(=\frac{-2x-1}{6x^2y}=\frac{2\left(-x-1\right)}{6x^2y}=-\frac{x-1}{3x^2y}\)
b.\(\frac{3}{2x+6}-\frac{x-6}{2x^2+6x}\) MTC= 2x (x + 3)
\(=\frac{3}{2\left(x+3\right)}-\frac{x-6}{2x\left(x+3\right)}\)
\(=\frac{3x}{2x\left(x+3\right)}-\frac{x-6}{2x\left(x+3\right)}=\frac{3x-\left(x-6\right)}{2x\left(x+3\right)}\)
\(=\frac{3x-x+6}{2x\left(x+3\right)}=\frac{2x+6}{2x\left(x+3\right)}=\frac{2\left(x+3\right)}{2x\left(x+3\right)}=\frac{1}{x}\)
c.\(\frac{2x}{x^2+2xy}+\frac{y}{xy-2y^2}+\frac{4}{x^2-4y^2}\)
\(=\frac{2x}{x\left(x+2y\right)}+\frac{y}{y\left(x-2y\right)}+\frac{4}{\left(x-2y\right)\left(x+2y\right)}\)MTC= xy (x+2y).(x-2y)
\(=\frac{2xy\left(x-2y\right)}{xy\left(x+2y\right)\left(x-2y\right)}+\frac{xy\left(x+2y\right)}{xy\left(x+2y\right)\left(x-2y\right)}+\frac{4xy}{xy\left(x+2y\right)\left(x-2y\right)}\)
\(=\frac{2x^2y-4xy^2+x^2y+2xy^2+4xy}{xy\left(x+2y\right)\left(x-2y\right)}\)
\(=\frac{3x^2y-2xy^2+4xy}{xy\left(x-2y\right)\left(x+2y\right)}=\frac{xy\left(3x-2y+4\right)}{xy\left(x-2y\right)\left(x+2y\right)}=\frac{3x-2y+4}{\left(x-2y\right)\left(x+2y\right)}\)
Chọn mk nha!