![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Nhận xét : M > 0
Cách 1. Áp dụng bđt Bunhiacopxki , ta có :
\(M^2=\left(1.\sqrt{x-1}+1.\sqrt{9-x}\right)^2\le\left(1^2+1^2\right)\left(x-1+9-x\right)\)
\(\Rightarrow M^2\le16\Rightarrow M\le4\)
Suy ra Max M = 4 \(\Leftrightarrow\begin{cases}1\le x\le9\\\sqrt{x-1}=\sqrt{9-x}\end{cases}\) \(\Leftrightarrow x=5\)
Cách 2. Ta có : \(M^2=8+2\sqrt{\left(x-1\right).\left(9-x\right)}\)
Áp dụng bđt Cauchy : \(2\sqrt{\left(x-1\right)\left(9-x\right)}\le x-1+9-x=8\)
\(\Rightarrow M^2\le16\Rightarrow M\le4\)
Max M = 4 \(\Leftrightarrow\begin{cases}1\le x\le9\\\sqrt{x-1}=\sqrt{9-x}\end{cases}\) <=> x = 5
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(P\le\sqrt{\left(1+1\right)\left(x-1+9-x\right)}=\sqrt{16}=4\) (Bunhiacopxki)
\(\Rightarrow P_{max}=4\) khi \(x-1=9-x\Rightarrow x=5\)
\(P=\sqrt{x-1}+\sqrt{9-x}\ge\sqrt{x-1+9-x}=2\sqrt{2}\)
\(\Rightarrow P_{min}=2\sqrt{2}\) khi \(\left[{}\begin{matrix}x-1=0\\9-x=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=9\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a)\(\sqrt{x^2-2x+1}-\sqrt{x^2-4x+4}=x-3\)
\(\Leftrightarrow\left(\sqrt{x^2-2x+1}-3\right)-\left(\sqrt{x^2-4x+4}-2\right)=x-3-1\)
\(\Leftrightarrow\frac{x^2-2x+1-9}{\sqrt{x^2-2x+1}+3}-\frac{x^2-4x+4-4}{\sqrt{x^2-4x+4}+2}=x-4\)
\(\Leftrightarrow\frac{x^2-2x-8}{\sqrt{x^2-2x+1}+3}-\frac{x^2-4x}{\sqrt{x^2-4x+4}+2}-\left(x-4\right)=0\)
\(\Leftrightarrow\frac{\left(x+2\right)\left(x-4\right)}{\sqrt{x^2-2x+1}+3}-\frac{x\left(x-4\right)}{\sqrt{x^2-4x+4}+2}-\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(\frac{x+2}{\sqrt{x^2-2x+1}+3}-\frac{x}{\sqrt{x^2-4x+4}+2}-1\right)=0\)
Dễ thấy: \(\frac{x+2}{\sqrt{x^2-2x+1}+3}-\frac{x}{\sqrt{x^2-4x+4}+2}-1< 0\)
\(\Rightarrow x-1=0\Rightarrow x=1\)
b)\(\sqrt{x^2-6x+9}-\sqrt{x^2+6x+9}=1\)
\(\Leftrightarrow\left(\sqrt{x^2-6x+9}-\frac{7}{2}\right)-\left(\sqrt{x^2+6x+9}-\frac{5}{2}\right)=0\)
\(\Leftrightarrow\frac{x^2-6x+9-\frac{49}{4}}{\sqrt{x^2-6x+9}+\frac{7}{2}}-\frac{x^2+6x+9-\frac{25}{4}}{\sqrt{x^2+6x+9}+\frac{5}{2}}=0\)
\(\Leftrightarrow\frac{\frac{4x^2-24x-13}{4}}{\sqrt{x^2-6x+9}+\frac{7}{2}}-\frac{\frac{4x^2+24x+11}{4}}{\sqrt{x^2+6x+9}+\frac{5}{2}}=0\)
\(\Leftrightarrow\frac{\frac{\left(2x-13\right)\left(2x+1\right)}{4}}{\sqrt{x^2-6x+9}+\frac{7}{2}}-\frac{\frac{\left(2x+1\right)\left(2x+11\right)}{4}}{\sqrt{x^2+6x+9}+\frac{5}{2}}=0\)
\(\Leftrightarrow\left(2x+1\right)\left(\frac{\frac{2x-13}{4}}{\sqrt{x^2-6x+9}+\frac{7}{2}}-\frac{\frac{2x+11}{4}}{\sqrt{x^2+6x+9}+\frac{5}{2}}\right)=0\)
Dễ thấy: \(\frac{\frac{2x-13}{4}}{\sqrt{x^2-6x+9}+\frac{7}{2}}-\frac{\frac{2x+11}{4}}{\sqrt{x^2+6x+9}+\frac{5}{2}}< 0\)
\(\Rightarrow2x+1=0\Rightarrow x=-\frac{1}{2}\)
c)Áp dụng BĐT CAuchy-Schwarz ta có:
\(P^2=\left(\sqrt{x-2}+\sqrt{4-x}\right)^2\)
\(\le\left(1+1\right)\left(x-2+4-x\right)\)
\(=2\cdot\left(x-2+4-x\right)=2\cdot2=4\)
\(\Rightarrow P^2\le4\Rightarrow P\le2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1) ĐK: x \(\ge\)1; y \(\ge\)2
Áp dụng bđt \(\frac{\sqrt{a}+\sqrt{b}}{2}\le\)\(\sqrt{\frac{a+b}{2}}\) (cho 2 sô a;b > 0) ta co:
\(\frac{A}{2}\le\sqrt{\frac{x-1+y-2}{2}}=\sqrt{\frac{4-3}{2}}=\sqrt{\frac{1}{2}}\)
\(A=\sqrt{\frac{1}{2}}.2=\sqrt{2}\)
Dấu "=" xảy ra khi \(\left\{\begin{matrix}x-1=y-2\\x+y\end{matrix}\right.\)\(\Leftrightarrow\left\{\begin{matrix}x=\frac{3}{2}\\y=\frac{5}{2}\end{matrix}\right.\)
2) ĐK: x \(\ge\)1; y \(\ge\)2
Áp dụng bđt AM-GM cho 2 số dương ta có:
\(\frac{\sqrt{x-1}}{x}=\frac{\sqrt{1.\left(x-1\right)}}{x}\le\frac{1+x-1}{2x}=\frac{1}{2}\)
\(\frac{\sqrt{y-2}}{y}=\frac{\sqrt{2.\left(y-2\right)}}{\sqrt{2}.y}\le\frac{2+y-2}{\sqrt{2}.2y}=\frac{1}{\sqrt{2}.2}\)
\(B=\frac{\sqrt{x-1}}{x}+\frac{\sqrt{y-2}}{y}\)\(\le\frac{1}{2}+\frac{1}{\sqrt{2}.2}=\frac{2}{4}+\frac{\sqrt{2}}{4}=\frac{2+\sqrt{2}}{4}\)
Dấu "=" xảy ra khi \(\left\{\begin{matrix}x-1=1\\y-2=2\end{matrix}\right.\)\(\Leftrightarrow\left\{\begin{matrix}x=2\\y=4\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(M^2=6+2\sqrt{x^2-6x+5}\)
ta thấy \(\sqrt{x^2-6x+5}\ge0\)
nghĩa là \(6+2\sqrt{x^2-6x+5}\)nhỏ nhất khi căn có giá trị =0
=> min =6
còn max thì nhìn là biết rồi : đa thức cộng thì max khi cái căn đó càng lớn mà Đk X<=1 thì x chạy về âm vô cùng thì cái căn càng lớn
vậy max =+∞
Ta có M2 = 8 + 2√[(x - 1)(9 - x)] <= 8 + (x - 1) + (9 - x) = 8 + 8 = 16
=> M <= 4 đạt GTLN tại x = 5