Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm giá trị lớn nhất của hàm số sau trên [-1; 1]
A. max y = 0 B. max y = 2
C. max y = 4 D. max y = 2
Tập xác định -1 ≤ x ≤ 1, do đó 1 – x ≤ 2, 1 + x ≤ 2 ⇒ ( 1 - x ) + ( 1 + x ) ≤ 2 2 < 4 nên C sai; Ngoài ra vì 0 và 2 đều nhỏ hơn 2 nên chỉ cần xét xem 2 có phải là giá trị của hàm số không, dễ thấy khi x = 0 thì y = 2. Vậy max y = 2
Đáp án: B
1.
Đặt \(x^2-2x+m=t\), phương trình trở thành \(t^2-2t+m=x\)
Ta có hệ \(\left\{{}\begin{matrix}x^2-2x+m=t\\t^2-2t+m=x\end{matrix}\right.\)
\(\Rightarrow\left(x-t\right)\left(x+t-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=t\\x=1-t\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=x^2-2x+m\\x=1-x^2+2x-m\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m=-x^2+3x\\m=-x^2+x+1\end{matrix}\right.\)
Phương trình hoành độ giao điểm của \(y=-x^2+x+1\) và \(y=-x^2+3x\):
\(-x^2+x+1=-x^2+3x\)
\(\Leftrightarrow x=\dfrac{1}{2}\Rightarrow y=\dfrac{5}{4}\)
Đồ thị hàm số \(y=-x^2+3x\) và \(y=-x^2+x+1\):
Dựa vào đồ thị, yêu cầu bài toán thỏa mãn khi \(m< \dfrac{5}{4}\)
Mà \(m\in\left[-10;10\right]\Rightarrow m\in[-10;\dfrac{5}{4})\)
Có cách nào lm bài này bằng cách lập bảng biến thiên k ạ
Ta thấy A; B nằm cùng về 1 nửa mặt phẳng so với d
Theo BĐT tam giác: \(\left|XA-XB\right|\le AB\)
Đẳng thức xảy ra khi và chỉ khi X;A;B thẳng hàng hay X là giao điểm của AB và d
(Nếu ko cần tìm tọa độ điểm X mà chỉ cần tìm giá trị max thì tính độ dài AB là đủ)
\(\overrightarrow{AB}=\left(2;1\right)\Rightarrow\left|XA-XB\right|_{max}=AB=\sqrt{5}\)
\(\Leftrightarrow P=\dfrac{\sqrt{c-2}}{c}+\dfrac{\sqrt{a-3}}{a}+\dfrac{\sqrt{b-4}}{b}\)
\(=\dfrac{\sqrt{3\left(a-3\right)}}{a\sqrt{3}}+\dfrac{\sqrt{4\left(b-4\right)}}{2b}+\dfrac{\sqrt{2\left(c-2\right)}}{c\sqrt{2}}\le\dfrac{\dfrac{3+a-3}{2}}{a\sqrt{3}}+\dfrac{\dfrac{4+b-4}{2}}{2b}+\dfrac{\dfrac{2+c-2}{2}}{c\sqrt{2}}=\dfrac{1}{2\sqrt{3}}+\dfrac{1}{4}+\dfrac{1}{2\sqrt{2}}\)
\(dấu"="xảy\) \(ra\Leftrightarrow\left\{{}\begin{matrix}3=a-3\\4=b-4\\2=c-2\\\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=6\\b=8\\c=4\end{matrix}\right.\)
Xét \(0 \geq (a-1)(2a-1)^2(a+2) = 4a^4 - 11a^2 + 9a - 2\)
\(\Rightarrow 4\left(a^4+b^4+c^4\right) \leq 11\left(a^2 + b^2 + c^2\right) - 9(a+b+c) + 6\)
\(\Rightarrow a^4+b^4+c^4\leq \dfrac{11}{4}\left(a^2+b^2+c^2\right) - 3\).
Ngoài ra, ta có \((a-1)(b-1)(c-1)\leq 0\Rightarrow abc \leq ab+bc+ca - 1\).
Do đó \(P\le\dfrac{11}{4}\left(a^2+b^2+c^2+2ab+2bc+2ca-2\right)-3=\dfrac{5}{2}\).
Đẳng thức xảy ra khi \((a,b,c) =\left(0, \dfrac{1}{2}. \dfrac{1}{2}\right)\) và các hoán vị.
\(x^4-1-2\left(m+1\right)x^2+2\left(m+1\right)=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^2+1\right)-2\left(m+1\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^2-2m-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2=1\\x^2=2m+1\end{matrix}\right.\)
Pt có 4 nghiệm pb khi: \(\left\{{}\begin{matrix}2m+1>0\\2m+1\ne1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m>-\dfrac{1}{2}\\m\ne0\end{matrix}\right.\)
Do \(x=\pm1< 3\) nên để \(x_1< x_2< x_3< x_4< 3\) thì:
\(\sqrt{2m+1}< 3\Leftrightarrow m< 4\) \(\Rightarrow\left\{{}\begin{matrix}-\dfrac{1}{2}< m< 4\\m\ne0\end{matrix}\right.\)
b. \(\left\{{}\begin{matrix}x_1-x_3=x_3-x_2\\x_1-x_3=x_2-x_1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=-x_2\\x_1-x_3=-x_1-x_1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_2=-x_1\\x_3=3x_1\end{matrix}\right.\)
Do vai trò \(x_1;x_2\) như nhau, giả sử \(x_1< 0\) \(\Rightarrow x_1;x_3\) là 2 nghiệm âm
TH1: \(\left\{{}\begin{matrix}x_1=-1\\x_2=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_3=-\sqrt{2m+1}\\x_3=3x_1\end{matrix}\right.\) \(\Rightarrow-\sqrt{2m+1}=-3\Rightarrow m=4\)
TH2: \(x_1=-\sqrt{2m+1}\Rightarrow\left\{{}\begin{matrix}x_3=-1\\x_3=3x_1\end{matrix}\right.\) \(\Rightarrow-1=-3\sqrt{2m+1}\) \(\Rightarrow m=-\dfrac{4}{9}\)
thầy cho em hỏi nếu bài này đặt \(x^2=t^{ }\left(t\ge0\right)\)
thì giải pt ẩn t có 2 nghiệm phân biệt dương
\(=>\left\{{}\begin{matrix}\Delta>0\\S>0\\P>0\end{matrix}\right.\) em giải ra thì m>0 =)))
Đặt x2−2x+m=tx2−2x+m=t, phương trình trở thành t2−2t+m=xt2−2t+m=x
Ta có hệ {x2−2x+m=tt2−2t+m=x{x2−2x+m=tt2−2t+m=x
⇒(x−t)(x+t−1)=0⇒(x−t)(x+t−1)=0
⇔[x=tx=1−t⇔[x=tx=1−t
⇔[x=x2−2x+mx=1−x2+2x−m⇔[x=x2−2x+mx=1−x2+2x−m
⇔[m=−x2+3xm=−x2+x+1⇔[m=−x2+3xm=−x2+x+1
Phương trình hoành độ giao điểm của y=−x2+x+1y=−x2+x+1 và y=−x2+3xy=−x2+3x:
−x2+x+1=−x2+3x−x2+x+1=−x2+3x
⇔x=12⇒y=54⇔x=12⇒y=54
Đồ thị hàm số y=−x2+3xy=−x2+3x và y=−x2+x+1y=−x2+x+1:
ta có \(B=\sqrt[5]{x^{15}.\left(2-x^5\right)^5}=\sqrt[5]{x^5.x^5.x^5\left(2-x^5\right).\left(2-x^5\right).\left(2-x^5\right).\left(2-x^5\right).\left(2-x^5\right)}\)
\(\Leftrightarrow B=\sqrt[5]{\left(\frac{3}{5}\right)^3.\frac{5}{3}x^5.\frac{5}{3}x^5.\frac{5}{3}x^5\left(2-x^5\right).\left(2-x^5\right).\left(2-x^5\right).\left(2-x^5\right).\left(2-x^5\right)}\)
\(\le\sqrt[5]{\left(\frac{3}{5}\right)^3.\left(\frac{5x^5+5\left(2-x^5\right)}{8}\right)^8}=\sqrt[5]{\left(\frac{3}{5}\right)^3.\left(\frac{5}{4}\right)^8}\)
Dâu bằng xảy ra khi \(\frac{5}{3}x^5=2-x^5\Leftrightarrow x=\sqrt[5]{\frac{3}{4}}\)