Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ukm
It's very hard
l can't do it
Sorry!
Đk: \(x\ge0\)
a) Ta có: x = 16 => A = \(\frac{\sqrt{16}+5}{\sqrt{16}+2}=\frac{4+5}{4+2}=\frac{9}{6}=\frac{3}{2}\)
\(x=3-2\sqrt{2}=\left(\sqrt{2}-1\right)^2\)=> \(\sqrt{x}=\sqrt{\left(\sqrt{2}-1\right)^2}=\sqrt{2}-1\)
=> A = \(\frac{\sqrt{2}-1+5}{\sqrt{2}-1+2}=\frac{\sqrt{2}+4}{\sqrt{2}+2}=\frac{\sqrt{2}\left(2\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}{\sqrt{2}\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}=\frac{4-\sqrt{2}-1}{2-1}=3-\sqrt{2}\)
b) A = 2 <=> \(\frac{\sqrt{x}+5}{\sqrt{x}+2}=2\) <=> \(\sqrt{x}+5=2\sqrt{x}+4\) <=> \(\sqrt{x}=1\) <=> x = 1 (tm)
\(A=\sqrt{x}+1\) <=> \(\frac{\sqrt{x}+5}{\sqrt{x}+2}=\sqrt{x}+1\) <=> \(\sqrt{x}+5=\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)\)
<=> \(\sqrt{x}+5=x+3\sqrt{x}+2\) <=> \(x+2\sqrt{x}-3=0\)<=> \(x+3\sqrt{x}-\sqrt{x}-3=0\)
<=> \(\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)=0\) <=> \(\sqrt{x}-1=0\)(vì \(\sqrt{x}+3>0\))
<=> \(x=1\)(tm)
c) Ta có: \(A=\frac{\sqrt{x}+5}{\sqrt{x}+2}=\frac{\sqrt{x}+2+3}{\sqrt{x}+2}=1+\frac{3}{\sqrt{x}+2}\)
Do \(\sqrt{x}+2\ge\) => \(\frac{3}{\sqrt{x}+2}\le\frac{3}{2}\) => \(1+\frac{3}{\sqrt{x}+2}\le1+\frac{3}{2}=\frac{5}{2}\) => A \(\le\)5/2
Dấu "=" xảy ra<=> x = 0
Vậy MaxA = 5/2 <=> x = 0
Lời giải :
a) \(A=3\sqrt{x-1}+7\ge7\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=1\)
b) \(B=\frac{4}{\sqrt{x}+3}\le\frac{4}{3}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=0\)
c) \(C=\frac{3\sqrt{x}+8}{\sqrt{x}+3}=\frac{3\left(\sqrt{x}+3\right)-1}{\sqrt{x}+3}=3-\frac{1}{\sqrt{x}+3}\)
Có \(\frac{1}{\sqrt{x}+3}\le\frac{1}{3}\forall x\)
\(\Leftrightarrow-\frac{1}{\sqrt{x}+3}\ge\frac{-1}{3}\)
\(\Leftrightarrow3-\frac{1}{\sqrt{x}+3}\ge3-\frac{1}{3}=\frac{8}{3}\)
\(\Leftrightarrow C\ge\frac{8}{3}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=0\)
d) \(D=x-3\sqrt{x}+2\)
\(D=\left(\sqrt{x}\right)^2-2\cdot\sqrt{x}\cdot\frac{3}{2}+\frac{9}{4}-\frac{1}{4}\)
\(D=\left(\sqrt{x}-\frac{3}{2}\right)^2-\frac{1}{4}\ge\frac{-1}{4}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\sqrt{x}=\frac{3}{2}\Leftrightarrow x=\frac{9}{4}\)
e) \(E=\frac{4}{x-2\sqrt{x}+3}=\frac{4}{\left(\sqrt{x}-1\right)^2+2}\le\frac{4}{2}=2\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\sqrt{x}=1\Leftrightarrow x=1\)
a) Vì \(3\sqrt{x-1}\ge0\forall x\ge1\)
\(\Rightarrow3\sqrt{x-1}+7\ge7\forall x\ge1\)
Dấu "=" xảy ra <=>\(3\sqrt{x-1}=0\Leftrightarrow\sqrt{x-1}=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Vậy Amin =7 tại x=1
TA THẤY\(X+\sqrt{X}\)>=0VỚI MỌI X LỚN HƠN 0 X KHÁC 1
=> \(X+\sqrt{X}+1\) >=1 VỚI MỌI X LỚN HƠN 0 X KHÁC 1
=> \(\frac{2}{X+\sqrt{X}+1}\)<=2 VỚI MỌI X LỚN HƠN 0 X KHÁC 1
HAY A<=2 (1)
\(X+\sqrt{X}+1\)>0 VỚI MỌI X LỚN HƠN 0 X KHÁC 1 VÀ 2>0
=> \(\frac{2}{X+\sqrt{X}+1}\)>0
HAY A<0(2)
TỪ (1) VÀ (2) => 0<A<=2
TA THẤY\(X+\sqrt{X}\)>=0VỚI MỌI X LỚN HƠN 0 X KHÁC 1
=> \(X+\sqrt{X}+1\) >=1 VỚI MỌI X LỚN HƠN 0 X KHÁC 1
=> \(\frac{2}{X+\sqrt{X}+1}\)<=2 VỚI MỌI X LỚN HƠN 0 X KHÁC 1
HAY A<=2 (1)
\(X+\sqrt{X}+1\)>0 VỚI MỌI X LỚN HƠN 0 X KHÁC 1 VÀ 2>0
=> \(\frac{2}{X+\sqrt{X}+1}\)>0
HAY A<0(2)
TỪ (1) VÀ (2) => 0<A<=2
\(B=\frac{x-1-4\sqrt{x}+\sqrt{x}+1}{x-1}.\frac{x-1}{x-2\sqrt{x}}\)
\(=\frac{x-3\sqrt{x}}{x-2\sqrt{x}}\)
\(=\frac{\sqrt{x}-3}{\sqrt{x}-2}\)
a.Ta co:
\(\frac{\sqrt{x}-3}{\sqrt{x}-2}< 1\left(x\ge0,x\ne4\right)\)
\(\Leftrightarrow\sqrt{x}-3< \sqrt{x}-2\)
\(\Leftrightarrow3>2\)
Vay \(B< 1\left(\forall x\ge0,x\ne4\right)\)
Lát mình giải 2 câu kia,di ăn com cái
b.Ta co:
\(\frac{\sqrt{x}-3}{\sqrt{x}-2}< \frac{3}{2}\)
\(\Leftrightarrow2\sqrt{x}-6< 3\sqrt{x}-6\)
\(\Leftrightarrow x>0\)
Vay \(B< \frac{3}{2}\left(\forall x>0,x\ne4\right)\)
c.Ta co:
\(\frac{\sqrt{x}-3}{\sqrt{x}-2}>\sqrt{x}-1\)
\(\Leftrightarrow\sqrt{x}-3>x-3\sqrt{x}+2\)
\(\Leftrightarrow x-4\sqrt{x}+5< 0\)
\(\Leftrightarrow\left(\sqrt{x}-2\right)^2+1< 0\) (vo ly)
Vay khong co gia tri nao cua x thoa man \(B>\sqrt{x}-1\)
Ta có \(A=x+\sqrt{1-14x-15x^2}=x+\sqrt{\left(x+1\right)\left(1-15x\right)}\)
Do \(-1\le x\le\frac{1}{15}\)nên \(9\left(x+1\right)\ge0;1-15x\ge0\)
Như vậy thì ta áp dụng BĐT AM - GM, ta được: \(3A=3x+\sqrt{9\left(x+1\right)\left(1-15x\right)}\)\(\le3x+\frac{9\left(x+1\right)+1-15x}{2}=3x+\left(5-3x\right)=5\)
\(\Rightarrow A\le\frac{5}{3}\)
Đẳng thức xảy ra khi \(\hept{\begin{cases}-1\le x\le\frac{1}{15}\\9\left(x+1\right)=1-15x\end{cases}}\Leftrightarrow x=-\frac{1}{3}\)
Vậy \(MaxA=\frac{5}{3}\), đạt được khi \(x=-\frac{1}{3}\)