\(2^m-2^n=256\)

b)\(2^m-2^n=1024\)<...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2020

a, 2m + 2n = 2m+n = 2m . 2n

mà 2m + 2n luôn \(\le\) 2m . 2n vì tổng luôn nhỏ hơn tích

và 2m . 2n = 2m + 2n chỉ khi 2m = 2n = 2m+n

=> m = n = 1

b, 256 = 28

ta có 2m - 2n = 256

=> 2m - 2n = 28

=> m \(\ge\) 9

m = 9 khi 2n = 28

=> m = 9; n = 8

THỎA MÃN ĐỀ BÀI

CHÚC BN HC TỐT

4 tháng 3 2018

2^m + 2^n = 2^(m + n) 
<=> 2^m = 2^(m + n) - 2^n 
<=> 2^m = 2^n(2^m - 1) 
<=> 2^(m - n) = 2^m - 1 (1) 
Vì m >= 1 nên 2^m - 1 >= 2^1 - 1 =1. Từ (1), ta suy ra 2^(m - n) > = 1 = 2^0 nên m >= n (2). 
=>2^(n - m) = 2^n - 1 (3) và (3) cho ta n > = m (4). 
(2) và (4) cho ta m = n và phương trình trở thành 
2^(m + 1) = 2^(2m) 
<=> m + 1 = 2m 
<=> m = 1 
Vậy phương trình có nghiệm m = n = 1. 
b, Vì \(2^m-2^n=256>0\) nên m >n 

Đặt m-n=d (d >0)

Ta có : 

\(2^m-2^n=2^n.\left(2^d-1\right)=256=2^8.1\)

=> 2 =2và 2d-1=1

=>n=8 và d=1

=> m=1+8=9

Vậy m=9, n=8

14 tháng 11 2019

ôi trời

Bài 2:

a: \(9^{20}=81^{10}\)

mà 81<9999

nên \(9^{20}< 9999^{10}\)

b: \(9^{20}=3^{40}\)

\(27^{13}=3^{39}\)

mà 40>39

nên \(9^{20}>27^{13}\)

18 tháng 7 2018

a)\(\dfrac{1}{9}.27^n=3^n\)

<=>27n=3n:\(\dfrac{1}{9}\)

<=>27n:3n=\(\dfrac{1}{9}\)

<=>33n:3n=\(\dfrac{1}{9}\)

<=>32n=\(\dfrac{1}{9}\)

<=>9n=\(\dfrac{1}{9}\)

<=>9n+1=1

<=>n+1=0

<=>n=-1

vậy n=-1

24 tháng 8 2019

Bạn tham khảo tại đây nhé: Câu hỏi của Khánh Huyền⁀ᶦᵈᵒᶫ .

Chúc bạn học tốt!