Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Thay x=-3 vào A, ta được:
\(A=\dfrac{-3-5}{-3-4}=\dfrac{8}{7}\)
b: \(B=\dfrac{2}{x+5}+\dfrac{x+25}{\left(x+5\right)\left(x-5\right)}=\dfrac{2x-10+x+25}{\left(x+5\right)\left(x-5\right)}=\dfrac{3x+15}{\left(x-5\right)\left(x+5\right)}=\dfrac{3}{x-5}\)
c: Để M là số nguyên thì \(x-4\in\left\{1;-1;3;-3\right\}\)
hay \(x\in\left\{3;7;1\right\}\)
a: \(B=\dfrac{\left(x-2\right)\left(x-3\right)}{\left(x-3\right)\left(x-4\right)}=\dfrac{x-2}{x-4}\)
Để B>=0 thì x-4>0 hoặc x-2<=0
=>x>4 hoặc x<=2
b: Để B là số nguyên thì x-4+2 chia hết cho x-4
\(\Leftrightarrow x-4\in\left\{1;-1;2;-2\right\}\)
hay \(x\in\left\{5;6;2\right\}\)
(a\(^2\)+b\(^2\))(x\(^2\)+y\(^2\))≥(ax+by)\(^2\)
<=> a\(^2\)x\(^2\)+a\(^2\)y\(^2\)+b\(^2\)x\(^2\)+\(b^2\)y\(^2\)≥(ax)\(^2\)+(by)\(^2\)+2axby
<=>a\(^2\)x\(^2\)-a\(^2\)x\(^2\)+a\(^2\)y\(^2\)+b\(^2\)x\(^2\)+b\(^2\)y\(^2\)-b\(^2\)y\(^2\)-2axby≥0
<=>(ay)\(^2\)-2axby+(bx)\(^2\)≥0
<=>(ay-bx)\(^2\)≥0 ( luôn đúng )
Đẳng thức xảy ra khi và chỉ khi \(\dfrac{a}{x}\)=\(\dfrac{b}{y}\)
Bài 4:
a. Ta thấy: $x^2-x+2=(x-\frac{1}{2})^2+1,75>0$ với mọi $x$.
Do đó để $B=\frac{x^2-x+2}{x-3}<0$ thì $x-3<0$
$\Leftrightarrow x<3$
b.
$B=\frac{x(x-3)+2(x-3)+8}{x-3}=x+2+\frac{8}{x-3}$
Với $x$ nguyên, để $B$ nguyên thì $x-3$ phải là ước của 8.
$\Rightarrow x-3\in\left\{\pm 1; \pm 2; \pm 4; \pm 8\right\}$
$\Rightarrow x\in \left\{4; 2; 5; 1; -1; 7; 11; -5\right\}$
Bài 5:
\(\frac{\frac{x}{x-y}-\frac{y}{x+y}}{\frac{y}{x-y}+\frac{x}{x+y}}=\frac{\frac{x(x+y)-y(x-y)}{(x-y)(x+y)}}{\frac{y(x+y)+x(x-y)}{(x-y)(x+y)}}\)
\(=\frac{x(x+y)-y(x-y)}{y(x+y)+x(x-y)}=\frac{x^2+y^2}{x^2+y^2}=1\)